Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:57:25.162Z Has data issue: false hasContentIssue false

Bragg Reflector Waveguide and Electro-Optic Modulator Based on Barium Titanate Epitaxial Thin Films

Published online by Cambridge University Press:  01 February 2011

Zhifu Liu
Affiliation:
[email protected], Northwestern University, Materials Science and Engineering and Materials Research Center, 2220 Campus Drive, Evanston, IL, 60208, United States, 847-491-7797
Pao-Tai Lin
Affiliation:
[email protected], Northwestern University, Materials Science and Engineering and Materials Research Center, 2220 Campus Drive, Evanston, IL, 60208, United States
Bruce W. Wessels
Affiliation:
[email protected], Northwestern University, Materials Science and Engineering and Materials Research Center, 2220 Campus Drive, Evanston, IL, 60208, United States
Get access

Abstract

We report the nanofabrication of Bragg reflector waveguide structure based on barium titanate (BTO) epitaxial thin film grown on MgO substrate and characterized its optical transmission. A low pressure (~1 Torr) nano-lithography was used for the formation of Bragg reflector waveguide structure. We demonstrate that there is sufficient refractive index contrast to form a well-defined stop band by forming gratings in a top strip layer of Si3N4 that was grown on BTO thin film. Simulation of the optical transmission and stop band of TE mode, and electro-optic (EO) modulator tunability are discussed as well. The non-linear photonic crystal waveguides are potentially suitable as tunable optical filters and ultra-wide bandwidth modulators.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Noguchi, K., Mitomi, O. and Miyazawa, H., OFC '96 Technical Digest, ThB2, pp. 205206 (1996).Google Scholar
2. Wooten, E. L., Kissa, K. M., -Yan, A. Y., Murphy, E. J., Lafaw, D. A., P. Hallemeier, F., Maack, D., Attanasio, D. V., Fritz, D. J., McBrien, G. J. and Bossi, D. E., IEEE J. of Selected Topics in Quantum Electronics 6, 69 (2000).Google Scholar
3. Li, G. L. and Liu, P. K. L., J. of Lightwave Tech. 21, 2010 (2003).Google Scholar
4. Lu, Y. Q., Xiao, M. and Salamo, G. J., Appl. Phys. Lett. 78, 1035 (2001).Google Scholar
5. Taylor, H. F., J. of Lightwave Technology 17, 1875 (1999).Google Scholar
6. Kim, R., Zhang, J., Eknoyan, O., Taylor, H. F. and Smith, T. L., Elec. Lett. 41, 1028 (2005).Google Scholar
7. Kim, R., Zhang, J., Eknoyan, O., Taylor, H. F. and Smith, T. L., Elec. Lett. 41, 1220 (2005).Google Scholar
8. Khurgin, J. B., Kang, J. U. and Ding, Y. J., Opt. Lett. 25, 70 (2000).Google Scholar
9. Meier, A. R., Niu, F. and Wessels, B.W., J. Cryst. Growth 294, 401 (2006).Google Scholar
10. Bernasconi, P., Zgonik, M. and Günter, P., J. Appl. Phys. 78, 2651 (1995).Google Scholar
11. Tang, P.S., Meier, A.L., Towner, D. J. and Wessels, B.W., Elec. Lett. 41, 1296 (2005).Google Scholar
12. Gaylord, Thomas K., Baird, W. E. and Moharam, M. G., Applied Optics 25, 4562 (1986).Google Scholar
13. Tang, P., Meier, A. L., Towner, D. J. and Wessels, B. W., Opt. Lett. 30, 254 (2005).Google Scholar