Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T13:02:50.500Z Has data issue: false hasContentIssue false

Borosilicate Nuclear Waste Glass Alteration Kinetics: Chemical Inhibition and Affinity Control

Published online by Cambridge University Press:  10 February 2011

T. Advocat
Affiliation:
Commissariat á l'Energie Atomique (CEA), Centre d'Etude de la Vallée du Rhône, Drrv/Scd, Laboratoire d'Etude de l'Altgrabiliti des Matdriaux, BP 171, 30207 Bagnols-sur-Céze, France
J. L. Chouchan
Affiliation:
Commissariat á l'Energie Atomique (CEA), Centre d'Etude de la Vallée du Rhône, Drrv/Scd, Laboratoire d'Etude de l'Altgrabiliti des Matdriaux, BP 171, 30207 Bagnols-sur-Céze, France
J. L. Crovisier
Affiliation:
CNRS-Centre de Geochimie de la Surface, 1 rue blessig 67084 Strasbourg Cedex, France
C. Guy
Affiliation:
Commissariat á l'Energie Atomique (CEA), DAM-LDG, Bruyères Le Chatêl, France
V. Daux
Affiliation:
Commissariat á l'Energie Atomique (CEA), DAM-LDG, Bruyères Le Chatêl, France
C. Jegou
Affiliation:
Commissariat á l'Energie Atomique (CEA), Centre d'Etude de la Vallée du Rhône, Drrv/Scd, Laboratoire d'Etude de l'Altgrabiliti des Matdriaux, BP 171, 30207 Bagnols-sur-Céze, France
S. Gin
Affiliation:
Commissariat á l'Energie Atomique (CEA), Centre d'Etude de la Vallée du Rhône, Drrv/Scd, Laboratoire d'Etude de l'Altgrabiliti des Matdriaux, BP 171, 30207 Bagnols-sur-Céze, France
E. Vernaz
Affiliation:
Commissariat á l'Energie Atomique (CEA), Centre d'Etude de la Vallée du Rhône, Drrv/Scd, Laboratoire d'Etude de l'Altgrabiliti des Matdriaux, BP 171, 30207 Bagnols-sur-Céze, France
Get access

Abstract

The objective of this work was to develop a more representative mathematical formulation of the alteration kinetics of the borosilicate SON68 glass by combining three approaches: (1) Compare extensive prior experimental static leaching results for SON68 glass with the first-order kinetic law in which silica is the predominant element, (2) Assess the exact role of dissolved silica on the alteration rate under conditions near and far from saturation, by means of dynamic leach tests and, (3) Compare the new data with the general kinetic law for silicates in which the reaction affinity, catalysis and inhibition are the three influencing factors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pederson, L.R., Buckwalter, C.Q. and McVay, G.L., “The Effect of Surface Area to Solution Volume on Waste Glass Leaching”, in Sci. Basis for Nuclear Waste Management, vol. VI. (1983).Google Scholar
2 Wallace, R. and Wicks, G., “Leaching Chemistry of Defense Borosilicate Glass”, in Sci. Basis for Nuclear Waste Management, vol. VI (1983).Google Scholar
3 Grambow, B., “A General Rate Equation for Nuclear Waste Glass Corrosion”, in Sci. Basis for Nuclear Waste Management, vol. VIII (1985).Google Scholar
4 Freude, E., Grambow, B., Luitze, W., Rabe, H. and Ewing, R.C., “Borosilicate Glass Alteration”, in Sci. Basis for Nuclear Waste Management, vol. VIII (1985).Google Scholar
5 Grambow, B. and Strachan, D., A Comparison of Performance of Nuclear Waste Glass by Modeling. PNL 6698, Richland. WA (1988).Google Scholar
6 Advocat, T., Crovisier, J.L., Fritz, B. and Vernaz, E., “Thermokinetic Model of Borosilicate Glass Dissolution”, in Sci. Basis for Nuclear Waste Management, vol. XIII (1990).Google Scholar
7 Inagaki, I. and Furuya, H., “Corrosion Behavior of a Powered Simulated Nuclear Waste Glass under Anoxic Condition”, in Sci. Basis for Nuclear Waste Management, vol. XVIII (1995).Google Scholar
8 Bourcier, B., Knauss, K. and Merzbacher, C., “A Kinetic Model for Borosilicate Glass Dissolution”. Proc. 6th inter. Symp. Water-Rock Interactions, Malvern, UK, AA (1989).Google Scholar
9 Gin, S., “Control of SON68 Nuclear Glass Alteration Kinetics under Saturation Conditions”, in Sci. Basis for Nuclear Waste Management, vol. XIX (1996).Google Scholar
10 Daux, V., Guy, C., Advocat, T., Crovisier, J. L., Stille, P.. “Kinetics aspects of basaltic glass dissolution at 90'C : röle of aqueous silicon and aluminum”. Chemical Geology (under Press).Google Scholar
11 Vernaz, E., Advocat, T., Dussossoy, J. L.. “Effects of the SA/V ratio on the long-term corrosion kinetics of SON68 glass”, Nuclear Waste Management III, Ceramic Trans. 9, 175185, (1990).Google Scholar
12 Lasaga, A., “Rate Law of Chemical Reactions. Kinetics of Geochemical Processes”, Min. Soc. Amer., Reviews in Mineralogy, vol. 8, p. 168 (1981).Google Scholar
13 Aagaard, P. and Helgeson, H., “Thermodynamic and Kinetic Constraints on Reaction Rates among Minerals and Aqueous Solutions”, Amer. J. Sci., vol. 282, p. 237285 (1982).Google Scholar
14 Nagy, K.L., Blum, A. and Lasaga, A., “Dissolution and Precipitation Kinetics of Kaolinite at 80°C and pH3: Dependence on Solution Saturation State”, Amer. J. of Sci. No 291 (1991).Google Scholar
15 Paul, A., “Chemical Durability of Glasses: A Thermodynamic Approach”, J. of Mater. Sci., vol. 12 (1977).Google Scholar
16 Jantzen, C. and Plodinec, M., “Thermodynamic Model of Natural, Medieval and Nuclear Waste Glass Durability”, Journ. of Non Cryst. Solids 67 (1984).Google Scholar