Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T20:31:14.934Z Has data issue: false hasContentIssue false

Boron Enhanced H Diffusion in Amorphous Si Formed by Ion Implantation

Published online by Cambridge University Press:  01 February 2011

Brett Cameron Johnson
Affiliation:
[email protected], University of Melbourne, School of Physics, Swanston Street, Melbourne, N/A, Australia
Armand J. Atanacio
Affiliation:
[email protected], Australian Nuclear Science & Technology Organisation, PMB 1, Menai, NSW, 2234, Australia
Kathryn E. Prince
Affiliation:
[email protected], Australian Nuclear Science & Technology Organisation, PMB 1, Menai, NSW, 2234, Australia
Jeffrey C. McCallum
Affiliation:
[email protected], University of Melbourne, School of Physics, Melbourne, 3010, Australia
Get access

Abstract

Boron enhanced H diffusion in amorphous Si (a-Si) layers formed by ion implantation is observed using secondary ion mass spectroscopy (SIMS). Constant concentrations of B were achieved using multiple energy B implantations into thick a-Si layers. The evolution of single H implanted profiles centered on the uniformly B-implanted regions was studied for partial anneals at temperatures in the range 380 – 640 °C. Boron enhanced diffusion is observed and the enhanced diffusion coefficient shows trends with temperature typically associated with a Fermi level shifting dependence. A modified form of the generalized Fermi level shifting model is considered in light of these results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Street, R. A., Physica B 170, 69 (1991).Google Scholar
2. Roth, J. A., Olson, G. L., Jacobson, D. C., and Poate, J. M., Mat. Res. Soc. Symp. Proc. 297, 291 (1993).Google Scholar
3. Beyer, W. and Zastrow, U., J. Non-Crys. Solids. 266269, 206 (2000).Google Scholar
4. Tsukamoto, K., Iwasaki, S., Sadoh, T., and Kuroki, Y., Thin Solid Films 286, 299 (1996).Google Scholar
5. and, C. G. V. de Walle Street, R. A., Phys. Rev. B. 51, 10615 (1995).Google Scholar
6. Street, R. A., Tsai, C. C., Kakalios, J., and Jackson, W. B., Philos. Mag. B 56, 305 (1987).Google Scholar
7. Su, Y.-S. and Pantelides, S. T., Phys. Rev. Lett. 88, 165503 (2002).Google Scholar
8. Acco, S., Beyer, W., E. van Faassen, E., and Weg, W. F. van der, J. Appl. Phys. 82, 2862 (1997).Google Scholar
9. Acco, S., Williams, D. L., Stold, P. A., Saris, F. W., van den Boogaard, M. J., Sinke, W. C., Weg, W. F. van der, Rooda, S., and Zalm, P. C., Phys. Rev. B. 53, 4415 (1996).Google Scholar
10. Beyer, W., Physica B 170, 105 (1991).Google Scholar
11. Johnson, B. C. and McCallum, J. C., Phys. Rev. B. 76, 045216 (2007).Google Scholar
12. Johnson, B. C. and McCallum, J. C. (2008), submitted to Physical Review B.Google Scholar
13. Biersack, J. P. and Haggmark, L. G., Nucl. Inst. Meth. 174, 257 (1980).Google Scholar
14. Mayer, J. W. and Lau, S. S., Electronic Materials Science For Integrated Circuits in Si and GaAs (Macmillan Publishing Company, 1990).Google Scholar
15. Bourgoin, J. and Lannoo, M., Point defects in semiconductors II (Springer, Berlin, 1983).Google Scholar
16. Waddell, C. N., Spitzer, W. G., Fredrickson, J. E., Hubler, G. K., and Kennedy, T. A., J. Appl. Phys. 55, 4361 (1984).Google Scholar
17. Muller, G., Curr. Opin. Solid State Mater. Sci. 3, 364 (1998).Google Scholar