Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T08:27:46.867Z Has data issue: false hasContentIssue false

Boron Effect on the Softening Parameter (Ω) of Advanced Ultra-High Strength Steels (A-UHSS) under Uniaxial Hot-Compression Conditions

Published online by Cambridge University Press:  01 October 2015

E. García-Mora
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U-5”, Ciudad Universitaria, 58066 – Morelia, Michoacán, México. E-mail: [email protected], [email protected]
I. Mejía
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U-5”, Ciudad Universitaria, 58066 – Morelia, Michoacán, México. E-mail: [email protected], [email protected]
J.M. Cabrera
Affiliation:
Departament de Ciència dels Materials i Enginyeria Metal•lúrgica, ETSEIB – Universitat Politècnica de Catalunya. Av. Diagonal 647, 08028 – Barcelona, Spain. Fundació CTM Centre Tecnològic, Av. de las Bases de Manresa, 1, 08240 – Manresa, Spain.
Get access

Abstract

Advanced ultra-high strength steels (A-UHSS) are revolutionizing both the steel and automotive industries, therefore it is imperative to study their hot plastic deformation behavior and modeling. The flow characteristics of all hot forming processes consist basically of two competitive phenomena: strain hardening and softening due to dynamic mechanisms (recovery and/or recrystallization). In this research work, the softening parameter was determined in a low carbon A-UHSS microalloyed steel with different amounts of boron (0, 14 and 214 ppm). Experimental stress–strain data of uniaxial hot-compression tests at different temperatures (950, 1000, 1050 and 1100 °C) and strain rates (10–3, 10–2 and 10–1 s–1) were used. The stress–strain relationships as a function of temperature and strain rate were described on the basis of the Estrin, Mecking, and Bergström model. The experimental values of the softening parameter Ω were adjusted using the least-squares method. In general, the results reveal that the softening parameter increases with increasing boron content.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Commitee on Automotive Applications, International Iron & Steel Institute, Advanced High Strength Steel Application Guidelines, 19 (2006).Google Scholar
Xiaodog, Z., Zhaohui, M. and Li, W., Current Status of Advanced High Strength Steel for Auto-making and its Development in Baosteel, (Baosteel Research Institute, Shangai, China, 2007).Google Scholar
Duensing, L., Modern Metals 62, 9294 (2006).Google Scholar
Smallman, R.E. and Ngan, A.H.W., Physical Metallurgy and Advanced Materials, 7th ed. (Butterworth-Heinemann, 2007) pp. 447449.CrossRefGoogle Scholar
Banerji, S.K. and Morral, J.E., in Boron in steel: proceedings of the International Symposium on Boron Steels, (The Metallurgical Society of AIME, Warrendale, PA, USA, 1980).Google Scholar
López-Chipres, E., Mejía, I., Maldonado, C., Bedolla-Jacuinde, A., El-Wahabi, M. and Cabrera, J.M., Mater. Sci. Eng. A 460-461, 464470 (2007).CrossRefGoogle Scholar
Mintz, B., Tuling, A. and Delgado, A., Mater. Sci. Technol. 19, 17211726 (2003).CrossRefGoogle Scholar
Chown, L.H. and Cornish, L.A., Mater. Sci. Eng. A 497, 263275 (2008).CrossRefGoogle Scholar
Wang, X.M. and He, X.L., ISIJ Int. 42, 3846 (2002).CrossRefGoogle Scholar
McQueen, H.J., Yue, S. and Ryan, N.D., Fry, E., J. Mater. Process. Tech. 53, 293310 (1995).CrossRefGoogle Scholar
Shenjua, S., Zhexi, Y. and Tingdong, X., J. Mater. Sci. Lett. 10, 12321234 (1991).Google Scholar
Jahazi, M. and Jonas, J.J., Mater. Sci. Eng. A 335, 4961 (2002).CrossRefGoogle Scholar
McQueen, H.J., Mater. Sci. Forum 539-543, 43974404 (2007).CrossRefGoogle Scholar
McQueen, H.J., Yue, S., Ryan, N.D. and Fry, E., J. Mater. Process. Tech. 53, 293310 (1995).CrossRefGoogle Scholar
Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M.E., King, W.E.., McNelley, R.R., McQueen, H.J. and Rollett, A.D., Mater. Sci. Eng. A 238, 219274 (1997).CrossRefGoogle Scholar
Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, 2004) pp. 282283.Google Scholar
Fundamentals of Modeling for Metals Processing, ASM Handbook, Volume 22A, 220–231 (2009).Google Scholar
Estrin, Y. and Mecking, H., Acta Metall. Mater. 32, 5770 (1984).CrossRefGoogle Scholar
Bergström, Y., Mater. Sci. Eng. 5, 193200 (1969/70).CrossRefGoogle Scholar
de la Rosa, A. García, Caracterización Metalográfica de Aceros Avanzados de Alta Resistencia Microaleados con Boro, Tesis de Licenciatura, Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, México, 2009.Google Scholar
García-Mora, E., Modelización de la deformación plástica en caliente de aceros avanzados de alta resistencia microaleados con boro, Tesis de Maestría, Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, México, 2012.Google Scholar
Luo, H.W., Zhao, P., Zhang, Y and Dang, Z.J., Mater. Sci. Tech. 17, 843 (2001).CrossRefGoogle Scholar
He, X.L., Djahazi, M., Jonas, J.J. and Jackman, J., Acta Metall. 39, 22952308 (1991).CrossRefGoogle Scholar
López-Chipres, E., Mejía, I., Maldonado, C., Bedolla-Jacuinde, A., El-Wahabi, M. and Cabrera, J.M., Mater. Sci. Eng. A 480, 4955 (2008).CrossRefGoogle Scholar