Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T03:00:26.275Z Has data issue: false hasContentIssue false

Blue Light Emission from PECVD Deposited Nanostructured SiC

Published online by Cambridge University Press:  01 February 2011

Liudmyla Ivashchenko
Affiliation:
[email protected], Institute for Problems of Material Science, NAS of Ukraine, Lab. ¹ 61, 3 Krzhyzhanovsky str., 03142 Kyiv, Ukraine, Kyiv, 03142, Ukraine, +38-044-4242540, +38-044-4242131
Andriy Vasin
Affiliation:
[email protected], Institute of Semiconductor Physics, NAS, Ukraine, Lab.¹15, Kyiv, N/A, 03026, Ukraine
Volodymyr Ivashchenko
Affiliation:
[email protected], Institute for Problems of Material Science, NAS Ukraine, Lab.¹61, Kyiv, N/A, 03142, Ukraine
Mykola Ushakov
Affiliation:
[email protected] for Problems of Material Science, NAS, UkraineLab.¹61KyivN/A03142Ukraine
Andriy Rusavsky
Affiliation:
[email protected], Istitute of Semiconductor Physics, NAS, Ukraine, Kyiv, N/A, 03026, Ukraine
Get access

Abstract

Experimental data on the room temperature blue light emission from nanocrystalline silicon carbide (nc-SiC) films are presented. The silicon carbide films were deposited on silicon substrates with a plasma enhanced chemical vapor deposition (PECVD) reactor from methyltrichlorosilane at substrate temperature in the range of 200-350°C. The film deposited at 350°C is nanostructured and X-ray diffraction proves the presence of the 3C-SiC crystallites. Infrared absorption spectroscopy in the region of Si-C, C-H, C-O, Si-H and Si-O bonds show the corresponding absorption bands. X-ray photoelectron spectroscopy studies confirm this bond picture. Photoluminescence was measured at 77 and 300 K. The bright blue emission has a double-peak structure at 415 and 437 nm. To clarify the origin of such an emission, tight binding molecular dynamics (TB-MD) simulations of several SiC and Si nanoclusters were carried out. Based on the temperature dependence of the photoluminescence and on the simulation data, a possible model of radiative recombination in nc-SiC films was proposed. According to this model, the emission bands at 415 and 437 nm are assigned to band-to-band and band-to-tail recombination in the nanocrystallite core. The recombination at band tails of the interface and Si-C-O-H amorphous tissue gives rise to a shoulder around 470 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.I., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Zhao, X., Schoenfeld, O., Aoyagi, Y. and Sugano, T., Appl. Phys. Lett. 65, 1290 (1994).Google Scholar
3. Skorupa, W., Yankov, R.A., Tychenko, E., Fröb, H., öhme, T. B and Leo, K., Appl. Phys. Lett. 68, 2410 (1996).Google Scholar
4. Filippov, V.V., Pershukevich, P.P., Kuznetsova, V.V., Khomenko, V.S. and Dolgii, L.N., J. Appl. Spectrosc 67, 852 (2000).Google Scholar
5. Giorgies, F., Chiodoni, A., Cicero, G., Ferrero, S., Mandracci, P., Barucca, G., Reitano, R. and Musemeci, P., Diamond and Related Materials 10, 1264 (2001).Google Scholar
6. Reitano, R., Foti, G., Pirri, C.F., Giorgis, F. and Mandracci, P., Mater. Sci. Engineer. C15, 299 (2001).Google Scholar
7. Ma, Z., Wang, L., Chen, K., Li, W., Zhang, L., Bao, Y., Wang, X., Xu, J., Huang, X. and Feng, D., J. Non-Cryst. Solids 299–302 (2002).Google Scholar
8. Chen, Q.W., Zhu, D.L., Zhu, C., Wang, J. and Zhang, Y.G., Appl. Phys. Lett. 82, 1018 (2003).Google Scholar
9. Chen, D., Liao, Z.M., Wang, L., Wang, H.Z., Zhao, F., Cheung, W.Y. and Wong, S.P., Optical Materials 23, 65 (2003).Google Scholar
10. Wu, X.L., Xiong, S.J., Siu, G.G., Huang, G.S., Mei, Y.F., Zhang, Z.Y., Deng, S.S. and Tan, C., Phys. Rev. Lett. 91, 157402 (2003).Google Scholar
11. Wu, X.L., Xiong, S.J., Fan, D.L., Gu, Y., Bao, X.M., Siu, G.G. and Stokes, M.J., Phys. Rev. B62, R7759 (2000).Google Scholar
12. Veprek, S., Iqbal, Z, Kuhne, R.O., Capezzuo, P., Sarott, F.A. and Gimzevski, J.K., J. Phys. C: Solid State Phys. 16, 6241 (1983).Google Scholar
13. Ivashchenko, V.I., Turchi, P.E.A., Shevchenko, V.I., Ivashchenko, L.A. and Rusakov, G.V., Phys. Rev. B66, 195201 (2002).Google Scholar
14. Bullot, J. and M.Schmidt, P., Phys. Stat. Sol.(b) 143, 345 (1987).Google Scholar
15. Ech-chamikh, E., Ameziane, E.L., Bennouna, A., Azizan, M., Tan, T.A.N. and Lopez-Rios, T., Thin Solid Films 259, 18 (1995).Google Scholar
16. Seekamp, J., Niemann, J. and Bauhofer, W., J. Non-Cryst. Solids 266–269, 704 (2000).Google Scholar
17. Jung, C.-K., Lim, D.-C., Jee, H.-G., Park, M.-G., Ku, S.-J., Yu, K.-S., Hong, B., Lee, S.-B. and Boo, J.-H., Surf. Coat. Technol. 171, 46 (2003).Google Scholar
18. Avila, A., Montero, I., Galan, L. and Ripalda, J.M., J. Appl. Phys. 89, 212 (2001).Google Scholar
19. Hybertsen, M.S., Phys. Rev. Lett. 72, 1514 (1994).Google Scholar
20. Nevin, W.A., Yamagishi, H., Yamaguchi, M. and Tawada, Y., Nature 368, 529 (1994).Google Scholar
21. Stathis, J.H. and Kastner, M.A., Phys. Rev. B35, 2972 (1987).Google Scholar
22. Nishida, M., J. Appl. Phys. 98, 023705 (2005).Google Scholar