Published online by Cambridge University Press: 17 March 2011
Block copolymer-based membranes can be functionalized with energy transducing proteins to reveal a versatile family of nanoscale materials. Our work has demonstrated the fabrication of protein-functionalized ABA triblock copolymer nanovesicles that possess a broad applicability towards areas like biosensing and energy production. ABA triblock copolymers possess certain advantages over lipid systems. For example, they can mimic biomembrane environments necessary for membrane protein refolding in a single chain (hydrophilic(A)- hydrophobic(B)-hydrophilic(A)), enabling large-area membrane fabrication using methods like Langmuir-Blodgett (LB) deposition. Furthermore, the robustness of the polymer molecules/structure result in spontaneous and rapid protein-functionalized nano-vesicle formation that retains structure as well as protein functionality for up to several months, compared to one to two weeks for the lipid systems (e.g. POPC). The membrane protein, Bacteriorhodopsin (BR), found in Halobacterium Halobium, is a light-actuated proton pump that develops gradients towards the demonstration of coupled functionality with other membrane proteins, such as the production of electricity through Bacteriorhodopsin activity-dependent reversal of Cytochrome C Oxidase (COX), found in Rhodobacter Sphaeroides. Protein-functionalized materials have the exciting potential of serving as the core technology behind a series of fieldable devices that are driven completely by biomolecules.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.