Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T09:28:40.991Z Has data issue: false hasContentIssue false

Biosensor based on DNA directed immobilization of enzymes onto optically sensitive porous Si

Published online by Cambridge University Press:  15 July 2013

Giorgi Shtenberg
Affiliation:
The Inter-Departmental Program of Biotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
Naama Massad-Ivanir
Affiliation:
Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Oren Moscovitz
Affiliation:
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
Sinem Engin
Affiliation:
Karlsruhe Institute of Technology, DFG – Center for Functional Nanostructures, Karlsruhe 76131, Germany
Michal Sharon
Affiliation:
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
Ljiljana Fruk
Affiliation:
Karlsruhe Institute of Technology, DFG – Center for Functional Nanostructures, Karlsruhe 76131, Germany
Ester Segal
Affiliation:
Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
Get access

Abstract

Optical biosensor for monitoring proteolytic activity is constructed by DNA-directed immobilization of enzymes onto porous Silicon nanostructures. This sensor configuration allows both protease recycling and easy surface regeneration for subsequent biosensing analysis by means of mild dehybridization conditions. We demonstrate real-time analysis of minute quantities of proteases paving the way for substrate profiling and the identification of cleavage sites. The biosensor is compatible with common proteomic methods and allows for a successful downstream mass spectrometry analysis of the reaction products.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schilling, O. and Overall, C. M., Curr. Opin. Chem. Biol. 11, 36 (2007).10.1016/j.cbpa.2006.11.037CrossRefGoogle Scholar
Neurath, H., Science 224, 350 (1984).CrossRefGoogle Scholar
Turk, B., Nat. Rev. Drug Discovery 5, 785 (2006).CrossRefGoogle Scholar
Overall, C. M. and Blobel, C. P., Nat. Rev. Mol. Cell Biol. 8, 245 (2007).CrossRefGoogle Scholar
Jane, A., Dronov, R., Hodges, A. and Voelcker, N. H., Trends Biotechnol. 27, 230 (2009).CrossRefGoogle Scholar
Massad-Ivanir, N., Shtenberg, G., Tzur, A., Krepker, M. A. and Segal, E., Anal. Chem. 83, 3282 (2011).CrossRefGoogle Scholar
Orosco, M. M., Pacholski, C. and Sailor, M. J., Nat. Nanotechnol. 4, 255 (2009).CrossRefGoogle Scholar
Kilian, K. A., Boecking, T. and Gooding, J. J., Chem. Commun., 630 (2009).Google Scholar
DeLouise, L. A., Kou, P. M. and Miller, B. L., Anal. Chem. 77, 3222 (2005).10.1021/ac048144+CrossRefGoogle Scholar
Fruk, L., Mueller, J., Weber, G., Narvaez, A., Dominguez, E. and Niemeyer, C. M., Chem.–Eur. J. 13, 5223 (2007).CrossRefGoogle Scholar
Niemeyer, C. M., Angew. Chem., Int. Ed. 49, 1200 (2010).CrossRefGoogle Scholar
Shtenberg, G., Massad-Ivanir, N., Moscovitz, O., Engin, S., Sharon, M., Fruk, L. and Segal, E., Anal. Chem. 85, 1951 (2013).CrossRefGoogle Scholar
Shtenberg, G., Massad-Ivanir, N., Engin, S., Sharon, M., Fruk, L. and Segal, E., Nanoscale Res. Lett. 7, (2012).CrossRefGoogle Scholar
Massad-Ivanir, N., Shtenberg, G., Zeidman, T. and Segal, E., Adv. Funct. Mater. 20, 2269 (2010).CrossRefGoogle Scholar