Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:42:54.976Z Has data issue: false hasContentIssue false

Biomolecular material systems with encapsulated interface bilayers

Published online by Cambridge University Press:  28 January 2011

Stephen A. Sarles
Affiliation:
Center for Intelligent Material Systems and Structures, 310 Durham Hall, Dept. of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, U.S.A.
Donald J. Leo
Affiliation:
Center for Intelligent Material Systems and Structures, 310 Durham Hall, Dept. of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, U.S.A.
Get access

Abstract

In this paper we present a novel approach for interface bilayer formation in which the uptake of an aqueous lipid vesicle solution by two polymeric hydrogels contained in a substrate causes the gels to swell so as to come into contact within an internal oil-filled region of the device. An interface bilayer, similar to those formed using the droplet interface bilayer (DIB) method, forms upon contact in oil between the lipid-encased ends of the two gels. Experimental measurements provide initial evidence that gel swelling enables automatic bilayer formation within a few minutes after the addition of lipid solution. The approach presented herein works toward the development of a new portable, easy-to-use screening platform that features tailored interface bilayers for a wide variety of screening applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ervin, E. N., White, R. J. and White, H. S., Analytical Chemistry 81(2), 533537 (2009).Google Scholar
2. Syeda, R., Holden, M. A., Hwang, W. L. and Bayley, H., Journal of the American Chemical Society 130(46), 1554315548 (2008).Google Scholar
3. Astier, Y., Braha, O. and Bayley, H., Journal of the American Chemical Society 128(5), 17051710 (2006).Google Scholar
4. Guan, X., Gu, L.-Q., Cheley, S., Braha, O. and Bayley, H., ChemBioChem 6(10), 18751881 (2005).Google Scholar
5. Holden, M. A., Needham, D. and Bayley, H., J. Am. Chem. Soc. 129(27), 86508655 (2007).Google Scholar
6. Hwang, W. L., Chen, M., Cronin, B., Holden, M. A. and Bayley, H., J. Am. Chem. Soc. 130(18), 58785879 (2008).Google Scholar
7. Maglia, G., Heron, A. J., Hwang, W. L., Holden, M. A., Mikhailova, E., Li, Q., Cheley, S. and Bayley, H., Nat Nano 4(7), 437440 (2009).Google Scholar
8. Funakoshi, K., Suzuki, H. and Takeuchi, S., Anal. Chem. 78(24), 81698174 (2006).Google Scholar
9. Malmstadt, N., Nash, M. A., Purnell, R. F. and Schmidt, J. J., Nano Letters 6(9), 19611965 (2006).Google Scholar
10. Sarles, S. A. and Leo, D. J., Lab on a Chip 10(6), 710717 (2010).Google Scholar
11. Sarles, S. A., Justin Stiltner, L., Williams, C. B. and Leo, D. J., ACS Applied Materials & Interfaces (2010).Google Scholar
12. Sarles, S. A. and Leo, D. J., Analytical Chemistry 82(3), 959966 (2010).Google Scholar
13. Heron, A. J., Thompson, J. R., Mason, A. E. and Wallace, M. I., J. Am. Chem. Soc. 129(51), 1604216047 (2007).Google Scholar
14. Thompson, J. R., Heron, A. J., Santoso, Y. and Wallace, M. I., Nano Lett. 7(12), 38753878 (2007).Google Scholar
15. Peppas, N., Hilt, J., Khademhosseini, A. and Langer, R., Advanced Materials 18(11), 13451360 (2006).Google Scholar
16. Peppas, N. A., Keys, K. B., Torres-Lugo, M. and Lowman, A. M., Journal of Controlled Release 62(1-2), 8187 (1999).Google Scholar