Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T05:25:34.470Z Has data issue: false hasContentIssue false

Bio-inspired Crystal Growth Induced by Novel Organic Compounds

Published online by Cambridge University Press:  17 March 2011

Nicholas B. Dinsdale
Affiliation:
Crystal Science Group, School of Chemistry & Physics, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
Brigid R. Heywood
Affiliation:
Crystal Science Group, School of Chemistry & Physics, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
Get access

Abstract

The growth of biogenic inorganic crystals demands much attention given the exceptional control of nucleation and growth that is evidenced in biological systems. In many cases the biological mineralization products are crystals engineered to express unique forms and habits; this being linked to the bio-function of minerals. It is acknowledged that the formation of these biogenic minerals is controlled by a complex directory of organic macromolecules which are chemically tailored to mediate the crystallization sequelae. In this study, an homologous series of sulphonated calix[4]arenes (further modified by the addition of an alkyl substituent (R = (CH2)nCH3; n = 0-7)) were selected as chemical and structural mimics for some of the active components in the acidic macromolecules known to be associated with many biogenic mineral phases. Here, these calix[4]arenes were assayed for their ability to control the growth of barium sulphate. Their presence in the crystallization liquor induced the twinning of the barium sulphate crystals; two forms of twinning were observed. Interpenetrant (2-31) twins were noted for substituted calix[4]arenes when R = (CH2)2CH3; and interpenetrant {610} twins when R = (CH2)nCH3; n = 0-7. When R = (CH2)nCH3; n = 0 or 1, the crystals also evidenced a novel acicular growth form. These effects were linked to the chemical properties of the calixarenes and structural recognition motifs created at the calix[4]arene/barium sulphate interface following the adsorption of these sulphonated moieties onto the nascent crystals. The results offer an insight into the mechanisms which may mediate such effects in vivo.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lowenstam, H. and Weiner, S., On Biomineralization, (Oxford University Press, 1991).Google Scholar
2. Mann, S., Webb, J. and Williams, R.J.P., editors of Biomineralization: Chemical and Biochemical Perspectives, (VCH: Weinheim, 1989).Google Scholar
3. Meldrum, F.C., Mann, S., Heywood, B.R., Frankel, R.B. and Bazylinski, D.A., Proc. R. Soc. Lond. B, 251, 231236 (1993). A. George, J. Gui, N.A. Jenkins, D.J. Gilbert, N.G. Copeland and A. Veis, J. Histochem. Cytochem., 42 (12), 1527-1531, (1994).Google Scholar
4. Durholtz, M.D., Kretsinger, R.H. and Lipinski, M.R., Comp. Biochem. and Physiology B, 123, 381388 (1999). D. Chateigner, C. Hedegaard and H.-R. Wenk, J. Struct. Geol., 22, 1723-1735, (2000).CrossRefGoogle Scholar
5. Sarashino, I. and Endo, K., American Mineralogist, 83, 15101515, (1998).CrossRefGoogle Scholar
6. Moradian-Oldak, J., Frolow, F., Addadi, L. and Weiner, S., Proc. R. Soc. Lond. B Biol. Sci., 247 (1318), 47-55, (1992).Google Scholar
7. Pereira-Mouriès, L., Almeida, M.-J., Ribeiro, C., Peduzzi, J., Barthélemy, M., Milet, C. and Lopez, E., Euro. J. Biochem., 269 (20), 49945003, (2002).CrossRefGoogle Scholar
8. Rusenko, K.W., Donachy, J.E. and Wheeler, A.P., Surface Reactive Peptides and Polymers: Discovery and Commercialization (Amer. Chem. Soc. Press, US, 1991).Google Scholar
9. Mann, S., Nature, 332, 119124, (1988).CrossRefGoogle Scholar
10. Champ, S., Fallon, P., Heywood, B.R. and Mascal, M., Angew. Chem. Intl. Ed. Engl., 39, 27162720, (2000).3.0.CO;2-Q>CrossRefGoogle Scholar
11. Buinjsters, P.J.J., Heywood, B.R., Hill, S.J., Sommerdijk, N.J., R. Notle and Zwannenburg, B., Langmuir, 17, 36233628, (2001).Google Scholar
12. Heywood, B.R., Pitt, K., Hill, S.J., Williams, S.J., MRS Proc., 260, 112, (2000).Google Scholar
13. Cuif, J.-P., Dauphin, Y. and Gautret, P., Int. J. Earth Sci., 88 (3), 582592, (1999). X.-L. Zhu, B. Ganss, H.A. Goldberg and J. Sodek, Biochem. and Cell Biol., 79, 737-746, (2001). W.M. Goldberg, Tissue & Cell, 33 (4), 376-387, (2001). P.L. Clode and A.T. Marshall, Protoplasma, 220 (3-4), 153-161, (2003). Y. Dauphin, J.-P. Cuif, J. Doucet, M. Salomé, J. Susini and C.T. Williams, Marine Biol., 142, 299-304, (2003).CrossRefGoogle Scholar
14. Makha, M. and Raston, C.L., Chem. Commun. 2001, 24702471.CrossRefGoogle Scholar
15. Gutsche, C.D., Calixarenes, (Royal Society of Chem., 1989).Google Scholar
16. Davis, F., O'Toole, L., Short, R. and Stirling, C.J.M., Langmuir, 12, 18921988, (1996).CrossRefGoogle Scholar
17. Castellano, R.K., Rudkevich, D.M. and Rebek, J., J. Am. Chem. Soc., 118, 1000210003, (1996). Y. Tokunaga, H. Sakon, H. Kanefusa, Y. Shimomura and K. Suzuki, Arkivoc, viii, 135-143, (2003).CrossRefGoogle Scholar
18. Arimura, T., Kubota, M., Araki, K., Shinkai, S. and Matsuda, T., Tet. Lett., 30 (19), 25632566, (1989). G. McMahon, S. O'Malley, K. Nolan and D. Diamond, Arkivok, vii, 23-31 (2003).CrossRefGoogle Scholar
19. Arduini, A., Pochini, A., Reverberi, S. and Ungaro, R., J. Chem. Soc., Chem. Commun. 1984, 981982.CrossRefGoogle Scholar
20. Hamilton, K., Ph.D Thesis, (Louisiana State University, 2003).Google Scholar
21. Ford, W.E., Dana's Textbook of Mineralogy, 4th ed., (Wiley, New York, 1949).Google Scholar
22. Benton, W.J., Collins, I.R., Grimsey, I.M., Parkinson, G.M. and Rodger, S.A., Faraday Discuss., 95, 281297, (1993).CrossRefGoogle Scholar
23. Qi, L., Cölfen, H. and Antonietti, M., Chem. Mater., 12, 23922403, (2000).CrossRefGoogle Scholar
24. Rautaray, D., Sainkar, S.R. and Sastry, M., CRYSTENGCOMM, 5, 400404, (2003).CrossRefGoogle Scholar
25. Bouropoulos, N., Weiner, S., and Addadi, L., Chem; Eur. J., 7 (9), 18811888, (2001). A.M.A. Mazen, D. Zhang and V.R. Franceschi, New Phytologist, 161 (2), 435, (2004).3.0.CO;2-I>CrossRefGoogle Scholar
26. Cody, A.M. and Cody, R.D., J. Crystal Growth, 485–498, (1987).Google Scholar
27. Phillips, F.C., An introduction to crystallography, 4th ed., (Longman, New York, 1971).Google Scholar
28. Budka, J., Lhoták, P., Stibor, I., Sykora, J. and Cisarová, I., presented at the 12th International Symposium on Supramolecular Chemistry, Eilat, Israel, O42, (2002).Google Scholar
29. Faldt, A., Krebs, F.C. and Jφrgensen, M., Tet. Lett., 41, 12411244, (2000).CrossRefGoogle Scholar
30. Fischer, R.B. and Rhinehammer, T.B., Analyt. Chem., 25 (10), 15441548, (1953).CrossRefGoogle Scholar
31. Walton, R.C., Kavanagh, J.P. and Heywood, B.R., J. Struct. Biol., 143, 1423, (2003).CrossRefGoogle Scholar
32. Heywood, B.R. and Hill, S.J., Crystal Science Group website, www.keele.ac.uk/depts/ch/groups/csg/sjh/suweb.htm, (Keele University, 1998).Google Scholar
33. Qi, L., Cölfen, H. and Antonietti, M., Angew. Chem. Int. Ed., 39 (3), 604607, (2000).3.0.CO;2-B>CrossRefGoogle Scholar