Article contents
Biodegradable Polymer Microfluidics for Tissue Engineering Microvasculature
Published online by Cambridge University Press: 01 February 2011
Abstract
In this work, we present for the first time, the fabrication of a fully biodegradable microfluidic device with features of micron-scale precision. This implantable MEMS device is a transition from poorly defined porous scaffolds to reproducible precision scaffolds with built-in convective conduits. First, conventional photolithography is used to create a master mold by bulk micromachining silicon. Next, polydimethylsiloxane (PDMS) silicone elastomer is replica molded to form a flexible inverse mold. The commonly used biodegradable polymer Poly-lactic-co-glycolic acid (PLGA 85:15) is then compression micromolded onto the PDMS to form micropatterned films of the biodegradable polymer. Finally, a thermal fusion bonding process is used to seal the biodegradable PLGA films, forming closed microfluidic channels at the capillary size-scale. Film thicknesses from 100μm-1mm are demonstrated with features having 2μm resolution and 0.2μm precision. Scanning electron micrographs of bonded biodegradable films reveal no observable bond interface and no significant pattern deformation. Bonded microfluidic channels are capable of supporting more than 30psi during flow studies, and we have used the processes to develop complex microfluidic networks for cell culture and implantation as well as simple channels to verify the fluid dynamics in the degradable microchannels. The processes described here are high resolution and fully biodegradable. In addition, they are fast, inexpensive, reproducible, and scalable, making them ideal for both rapid prototyping and manufacturing of tissue engineering scaffolds.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002
References
- 7
- Cited by