Article contents
Beta Silicon Carbide Pn Junction Diodes
Published online by Cambridge University Press: 15 February 2011
Abstract
Beta silicon carbide (3C-SiC) diodes have been fabricated using ion implantation as the selective doping technique. Previous work on 3C-SiC diodes have exhibited properties such as low reverse breakdown voltages and high ideality factors. Also, 6H and 4H SiC diodes have been reported. This paper studies a different procedure to produce better 3C-SiC diodes for use in the electronics industry. Current versus voltage, capacitance versus voltage and temperature versus voltage tests were conducted on the devices.
Isolation between devices is a prominent concern when building integrated circuits. Proton bombardment is the preferred planar process for forming isolation regions in gallium arsenide (GaAs) due to the lack of a stable native oxide. Hydrogen and boron in GaAs have exhibited good electrical isolation between devices. This paper investigates using proton bombardment to form isolation regions in 3C-SiC. Cubic SiC samples are implanted with a variety of implant doses, ranging from 1 × 1014 to 1 × 1015 ions / cm2 , and implant energies ranging from 150 to 300 keV. Hall measurement tests were performed to study the characteristics of the implanted material.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
- 1
- Cited by