Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:25:23.908Z Has data issue: false hasContentIssue false

A Beem Study of PtSi Schottky Contacts on Ion-Milled Si

Published online by Cambridge University Press:  10 February 2011

Guo-Ping Ru
Affiliation:
Department of Electronic Engineering, Fudan University, Shanghai 200433, China
C. Detavernier
Affiliation:
Department of Solid State Science, University of Gent, B-9000 Gent, Belgium
R. A. Donaton
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
A. Blondeel
Affiliation:
Department of Solid State Science, University of Gent, B-9000 Gent, Belgium
P. Clauws
Affiliation:
Department of Solid State Science, University of Gent, B-9000 Gent, Belgium
R. L. Van Meirhaeghe
Affiliation:
Department of Solid State Science, University of Gent, B-9000 Gent, Belgium
F. Cardon
Affiliation:
Department of Solid State Science, University of Gent, B-9000 Gent, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Also at INSYS, K U. Leuven, B-3001 Leuven, Belgium
Xin-Ping Qu
Affiliation:
Department of Electronic Engineering, Fudan University, Shanghai 200433, China
Shi-Yang Zhu
Affiliation:
Department of Electronic Engineering, Fudan University, Shanghai 200433, China
Bing-Zong Li
Affiliation:
Department of Electronic Engineering, Fudan University, Shanghai 200433, China
Get access

Abstract

Ballistic electron emission microscopy (BEEM) and deep level transient spectroscopy (DLTS) have been used to study the effects of substrate damage introduced by an ion-milling process in PtSi/n-Si Schottky contacts. Argon ions with well-defined energies of 300, 500, 700, 1000, 1500 eV were used to sputter n-type Si substrates in an ion beam sputtering system before metal deposition and silicide formation. Histograms of the PtSi/n-Si Schottky barrier height (SBH) measured by BEEM show that the mean SBH decreases with increasing ion energy, which can be explained as a result of donor-like defects that are introduced by the ion milling treatment. From DLTS measurements, we found direct evidence for the presence of such defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] See for example, Mogab, C. J., Dry Etching, in VLSI Technology, ed. Sze, S. M. (McGraw-ill, 1983, Auckland).Google Scholar
[2] Fonash, S. J., J. Electrochem. Soc. 66 3885 (1990).Google Scholar
[3] Ashok, S., Chow, T. P. and Baliga, B. J., Appl. Phys. Lett. 42, 687 (1983).10.1063/1.94073Google Scholar
[4] F, Moghadam, K. and Mu, X. C., IEEE Trans. Electron Devices ED–36, 1602 (1989).10.1109/16.34219Google Scholar
[5] Grusell, E., Berg, S. and Andersson, L. P., J. Electrochem. Soc. 127, 1573 (1980).Google Scholar
[6] Deenapanray, P. N. K., Auret, F. D. and Myburg, G., J Vac. Sci. Technol. B, 16 (1873).Google Scholar
[7] Tung, R. T., Phys. Rev. B, 45 13509(1992).10.1103/PhysRevB.45.13509Google Scholar
[8] Kaiser, W. J. and Bell, L. D., Phys. Rev. Lett. 66 1406 (1988).10.1103/PhysRevLett.60.1406Google Scholar
[9] Bell, L. D. and Kaiser, W. J., Phys. Rev. Lett. 66 2368 (1988).10.1103/PhysRevLett.61.2368Google Scholar
[10] Couillard, J. G., Davies, A. and Craighead, H. G., .J. Vac. Sci. Technol. B1O, 3112 (1992).10.1116/1.585939Google Scholar
[11] Quattropani, L., Solt, K., Niedermann, P., -Aprile, I. M., Fischer, O. and Pavelka, T., Appl. Surf Sci. 70/71, 391 (1993).10.1016/0169-4332(93)90463-LGoogle Scholar
[12] Donaton, R. A., Jin, S., Bender, H., Zagrebnov, M., Baert, K., Maex, K., Vantomme, A., Langouche, G., Microelectron. Eng. 37/38, 507 (1997).Google Scholar
[13] Sze, S. M., Physics of Semiconductor Devices (Wiley, 1981).Google Scholar
[14] Shannon, J. M., Appl. Phys. Lett. 24, 369 (1974).Google Scholar