Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T22:58:11.705Z Has data issue: false hasContentIssue false

Bandgap Engineering of Silicon Quantum Dot Nanostructures for High Efficient Silicon Solar Cell: The Tandem Approach

Published online by Cambridge University Press:  01 February 2011

B. Rezgui
Affiliation:
[email protected], Institut des Nanotechnologies de Lyon (INL), Universite de Lyon, CNRS UMR-5270, INSA LYON, Villeurbanne, France
A. Sibai
Affiliation:
[email protected], Institut des Nanotechnologies de Lyon (INL), Universite de Lyon, CNRS UMR-5270, INSA LYON, Villeurbanne, France
T. Nychyporuk
Affiliation:
[email protected], Institut des Nanotechnologies de Lyon (INL), Universite de Lyon, CNRS UMR-5270, INSA LYON, Villeurbanne, France
O. Marty
Affiliation:
[email protected], Institut des Nanotechnologies de Lyon (INL), Universite de Lyon, CNRS UMR-5270, INSA LYON, Villeurbanne, France
M. Lemiti
Affiliation:
[email protected], Institut des Nanotechnologies de Lyon (INL), Universite de Lyon,CNRS UMR-5270, INSA LYON, Villeurbanne, France
Georges Brémond
Affiliation:
[email protected], Institut des Nanotechnologies de Lyon (INL), Universite de Lyon, CNRS UMR-5270, INSA LYON, Villeurbanne, France
Get access

Abstract

A tandem approach is proposed using Silicon nanostructures to increase the efficiency of so-called third generation photovoltaic solar cells.Si quantum dot nanostructures (or silicon nanocrystals)are synthesized by depositing silicon-rich nitride (SRN) layers using plasma-enhanced chemical vapour deposition (PECVD). We have shown the intrinsic formation of silicon nanocrystals (nc-Si) in non-stoechiometric amorphous hydrogenated silicon nitride (a-SiNx:H) layers using pure silane (SiH4) and ammonia (NH3) as reactants. The NH3 would provide more hydrogen in the silicon nitride film leading to an improvement of the crystallinity of Si quantum dots (QD) by favouring the disorder-to-order transition. Furthermore, hydrogen dissociated from the NH3 would passivate the surface of a Si QD more effectively.Transmission Electron Microscopy (TEM) was employed to explore the microstructure of the as-deposited Si-in-SiNx composite films. The chemical bonds of these films were examined by using Fourier Transform Infrared (FTIR) spectroscopy in the wavenumber range from 400 to 4000 cm-1 with a resolution of 4 cm-1. The photoluminescence (PL) property of silicon nanocrystals in silicon-rich nitride (SRN) layers are also investigated. The peak position of PL could be controlled by adjusting the flow rates of ammonia and silane . Two types of luminescent mechanisms, such as radiative defects in the film and the quantum confinement effect (QCE) in silicon nanocrystals, have been proposed to explain the origin of light emission from these structures. These two mechanisms are inherently coexisting in our samples and the photoluminescence spectrum depends on the contribution of each other. The optical absorption properties of the deposited films are obtained and analyzed from light transmittance measurements. Spectroscopique ellipsometry have been performed in order to analyse the refractive index and the extension coefficient. All these measurements were carried out at room temperature. These techniques have given good correlation in the extraction of the absorption coefficient induced by the Si nanocrystal in the visible /UV energy range. Measurements of photocurrent have shown a great increase of the induced currrent in the visible/UV energy range for an optimum of deposition conditions. These results will be discussed in order to reach a better knowledge of the physical properties of this third generation photovoltaic all silicon included material for the tandem solar cell application approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pavesi, L., Dal Negro, L., Mazzoleni, C, Franzo, G and Priolo, F, Nature 408 (2000) 440.Google Scholar
2. Kim, T.-Y., Park, N.-M., Kim, K.-H., Sung, G. Y., Ok, Y.-W., Seong, T.-Y., Choi, C.-J., Appl. Phys. Lett. 85 (2004) 5355.Google Scholar
3. Conibeer, G., Green, M., Corkish, R., Cho, Y., Cho, E.-C., Jiang, C.-W., Fangsuwannarak, T., Pink, E., Huang, Y., Puzzer, T., Trupke, T., Richards, B., Shalav, A., Lin, K.-L., Thin Solid Films 511–512 (2006) 654662.Google Scholar
4. Green, M. A., Cho, E.-C., Cho, Y., Huang, Y., Pink, E., Trupke, T., Lin, A., Fangsuwannarak, T., Puzzer, T., Conibeer, G. and Corkish, R., 20th European Photovoltaic Solar Energy Conference, Barcelona Spain, June 2005 p. 3.Google Scholar
5. Lalic, N., Linnors, J., J. Lumin. 80, 263 (1999).Google Scholar
6. Choi, S.-H., Elliman, R. G., Appl. Phys. Lett. 75, 968 (1999).Google Scholar
7. Kim, T.-Y., Park, N.-M., Kim, K.-H., Sung, G. Y., Ok, Y.-W., Seong, T.-Y., Choi, C.-J., Appl. Phys. Lett. 85, 5355 (2004).Google Scholar
8. Hao, H. L., Wu, L. K., Shen, W. Z., Dekkers, H. F. W., Appl. Phys. Lett. 91, 201922 (2007).Google Scholar
9. Ding, L., Chen, T. P., Liu, Y., Ng, C. Y., Fung, S., Phys. Rev. B, 72, 125419 (2005).Google Scholar
10. Wang, M., Li, D., Yuan, Z., Yang, D., Que, D., Appl. Phys. Lett. 90, 131903 (2007).Google Scholar
11. Dal Negro, L., Yi, J. H., Michel, J., Kimerling, L. C., Chang, T.-W. F., Sukhovatkin, V., Sargent, E. H., Appl. Phys. Lett. 88, 233109 (2006).Google Scholar
12. Deshpande, S. V., Gulari, E., Brown, S. W., Rand, S. C., J. Appl. Phys. 77, 6534 (1995).Google Scholar
13. Hao, H. L., Wu, L. K., Shen, W. Z., Appl. Phys. Lett. 92, 121922 (2008).Google Scholar
14. Green, Martin A., Prog. Photovolt: Res. Appl. 9 (2001) 123135.Google Scholar
15. De la Torre, J., Bremond, G., Lemiti, M., Guillot, G., Mur, P., Buffet, N., Thin Solid Films 511–512 (2006) 163166.Google Scholar
16. Esmaeili-Rad, M. R., Sazono, A. v. Kazanskii, A. G., Khomich, A. A., Nathan, A., J. Mater. Sci: Mater. Electron. 18 (2007) 405409.Google Scholar
17. Lelièvre, J.-F., Rodriguez, H., Fourmond, E., Quoizola, S., Lipinski, M., Araujo, D., Bremond, G., Lemiti, M., phys. stat. Sol. (c) 4, No. 4, 15541559 (2007).Google Scholar