Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T09:01:54.406Z Has data issue: false hasContentIssue false

Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays

Published online by Cambridge University Press:  01 February 2011

Arokia Nathan
Affiliation:
[email protected], University of Waterloo, Electrical and Computer Engineering, 200 University Avenue W., Waterloo, Ontario, N2L 3G1, Canada
Denis Striakhilev
Affiliation:
[email protected], University of Waterloo, Electrical and Computer Engineering, Waterloo, Ontario, N2L 3G1, Canada
Reza Chaji
Affiliation:
[email protected], University of Waterloo, Electrical and Computer Engineering, Waterloo, Ontario, N2L 3G1, Canada
Shahin Ashtiani
Affiliation:
[email protected], University of Waterloo, Electrical and Computer Engineering, Waterloo, Ontario, N2L 3G1, Canada
Czang-Ho Lee
Affiliation:
[email protected], University of Waterloo, Electrical and Computer Engineering, Waterloo, Ontario, N2L 3G1, Canada
Andrei Sazonov
Affiliation:
[email protected], University of Waterloo, Electrical and Computer Engineering, Waterloo, Ontario, N2L 3G1, Canada
John Robertson
Affiliation:
[email protected], University of Cambridge, Electrical Engineering Division, Department of Engineering, Cambridge, N/A, CB3 0FA, United Kingdom
William Milne
Affiliation:
[email protected], University of Cambridge, Electrical Engineering Division, Department of Engineering, Cambridge, N/A, CB3 0FA, United Kingdom
Get access

Abstract

Organic light emitting diode (OLED) displays are a serious competitor to liquid crystal displays in view of their superior picture quality, higher contrast, faster on/off response, thinner profile, and high power efficiency. For large area and/or high-resolution applications, an active matrix OLED (AMOLED) addressing scheme is vital. The active matrix backplane can be made with amorphous silicon (a-Si), polysilicon, or organic technology, all of which suffer from threshold voltage shift and/or mismatch problems, causing temporal or spatial variations in the OLED brightness. In addition, the efficiency of the OLED itself degrades over time. Despite these shortcomings, there has been considerable progress in development of AMOLED displays using circuit solutions engineered to provide stable and uniform brightness. Indeed the design of AMOLED pixel circuits, particularly in low-mobility TFT technologies such as a-Si, is challenging due to the stringent requirements of timing, current matching, and low voltage operation. While circuit solutions are necessary, they are not sufficient. Process improvements to enhance TFT performance are becoming inevitable. This paper will review pertinent material requirements of AMOLED backplanes along with design considerations that address pixel architecture, contact resistance, and more importantly, the threshold voltage stability and associated gate overdrive voltage. In particular, we address the question of whether conventional PECVD can be deployed for high mobility and high stability TFTs, and if micro-/nano-crystalline silicon could provide the solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hack, M., Brown, J.J., SID J. of Info. Display 18, 3, 16 (2002).Google Scholar
2. Gu, G. and Forrest, S.R., IEEE J. of Selected Topics in Quantum Electronic, 4, 83 (1998).Google Scholar
3. Jung, J.H. et al. Dig. Tech. Papers of SID'05 36,, 538 (2005).Google Scholar
4. Bock, K.-H., Proc. IEEE 93, 1400 (2005).Google Scholar
5. Blochwitz-Nimoth, J., Brandt, J., Hoffman, M., Birnstock, J., Pfeiffer, M., He, G., Wellmann, P., Leo, K., Dig. Tech. Papers of SID'04 35, 1000 (2004).Google Scholar
6. Nathan, A. et al. , Dig. Tech. Papers of SID'04 35, 1508 (2004)..Google Scholar
7. Dawson, R.M.A. et al. , Dig. Tech. Papers of SID'04 30, 438 (1999).Google Scholar
8. Kumar, A., Nathan, A., Jabbour, G.E., IEEE Trans. Electron Devices 52, 2386 (2005).Google Scholar
9. Lu, M.-H., Weaver, M.S., Zhou, T.X., Rothman, M., Kwong, R.C., Hack, M., Brown, J.J., Appl. Phys.Letts, 81, 3921(2002).Google Scholar
10. Tsujimura, T. et al. , Dig. Tech. Papers of SID'03 34, 6(2003).Google Scholar
11. Lih, J.J., Sung, C.F., Weaver, M.S., Hack, M., Brown, J.J., Dig. Tech. Papers of SID'03 4, 14 (2003).Google Scholar
12. Chuman, T., Ohta, S., S.Miyaguchi, Satoh, H., Tanabe, T., Okuda, Y., Tsichida, M., Dig. Tech. Papers of SID'04 35, 45 (2004).Google Scholar
13. Striakhilev, D., Nathan, A., Servati, P., Vygranenko, Y., Lee, C.H., Sazonov, A., IEEE J. of Display Tech. (2006), to appear.Google Scholar
14. Street, R.A., “Hydrogenated Amorphous Silicon”, (Cambridge University Press, 1991).Google Scholar
15. Karim, K.S., Nathan, A., Hack, M., Milne, W.I., IEEE Electron Device Letts. 25, 188 (2004).Google Scholar
16. Sakariya, K., Servati, P., Striakhilev, D., Nathan, A. in Electronics on Unconventional Substrates--Electrotextiles and Giant-Area Flexible Circuits, edited by Shur, M.S., Wilson, P.M. and Urban, D. (Mater. Res. Soc. Symp. Proc. 736, Warrendale, PA, 2002), publ.#D7.15.1.Google Scholar
17. Jafarabadiashtiani, S., Chaji, G., Sambandan, S., Striakhilev, D., Servati, P., Nathan, A., Dig. Tech. Papers of SID'05 36, 316 (2005).Google Scholar
18. Powell, M. J., Berkel, C. van, and Hughes, J. R., Appl. Phys. Letts. 54, 1323 (1989).Google Scholar
19. Jahinuzzaman, S.M., Sultana, A., Sakariya, K., Servati, P., and Nathan, A., App. Phys. Letts, 87,. 23502 (2005).Google Scholar
20. Sakariya, K., Servati, P., and Nathan, A., IEEE Trans. on Electron Devices 51, 2019(2004).Google Scholar
21. Sanford, J.L., Libsch, F., Tech. Papers of SID'03 34,. 10 (2003).Google Scholar
22. Nathan, A., Chaji, G.R., and Ashtiani, S.J., IEEE J. of Display Tech. 1, 267 (2005).Google Scholar
23. Servati, P., Tao, S., Horne, E., Striakhilev, D., Nathan, A. in Flexible Electronics 2004-Materials and Device Technology, edited by Fruehauf, N., Chalamala, B. R., Gnade, B. E. and Jang, J. (Mater. Res. Soc. Symp. Proc. 814, Warrendale, PA, 2004) publ.#I6.13.1.Google Scholar
24. Kasap, S.O., Principles of Electronic Materials and Devices, McGraw Hill, 2006.Google Scholar
25. Lim, K.M. et al. , Solid-State Electronics, 49 1107 (2005).Google Scholar
26. Wagner, S., Gleskova, H., Cheng, I-Chun, Wu, M., Thin Solid Films, 430, 15 (2003).Google Scholar
27. Puigdollers, J. et al. , J. Non-Crystalline Solids 299–302 400 (2002).Google Scholar
28. Chen, X.Y., Shen, W.Z., Chen, H., Zhang, R., and He, Y.L., Nanotechnology 17, 595 (2006).Google Scholar
29. Seto, J., J. Appl. Phys., 46, 5247 (1975).Google Scholar
30. Lee, C.H., Sazonov, A., and Nathan, A., Appl. Phys. Letts. 86, 222106 (2005).Google Scholar
31. Lee, C.H., Sazonov, A., and Nathan, A., IEEE IEDM Tech. Dig., 915 (2005).Google Scholar
32. Cheng, I. and Wagner, S., Appl. Phys. Lett. 80, 440 (2002).Google Scholar
33. Kasouit, S., Cabarrocas, P. Roca i., Vanderhaghen, R., Bonnassieux, Y., Elyaakoubi, M.; French, I.D., J. Non-Crystalline Solids 338–340, 369 (2004).Google Scholar
34. Kasouit, S., Cabarrocas, P. Roca.i., Vanderhaghen, R., Bonnassieux, Y., Elyaakoubi, M., French, I.D., Thin Solid Films 427, 67 (2004).Google Scholar
35. Lee, C.H., Striakhilev, D., Nathan, A., J. Vac. Sci. Tech. A. 22, 991 (2004).Google Scholar
36.C.Lee, H., Striakhilev, D., Tao, S., Nathan, A., IEEE Electron Device Letts 26, 637 (2005).Google Scholar
37. Lee, C.H., Striakhilev, D., Nathan, A., IEEE Trans. on Electron Devices (2006), submitted.Google Scholar
38. Matsui, T., Matsuda, A. and Kondo, M. in Amorphous and Nanocrystalline Silicon Science and Technology—2004, edited by Ganguly, G., Kondo, M., Schiff, E. A., Carius, R. and Biswas, R. (Mater. Res. Soc. Symp. Proc. 808, Warrendale, PA, 2004) publ.#A8.1.1.Google Scholar