Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T04:01:41.984Z Has data issue: false hasContentIssue false

Atomistic Simulation of Nanocrystalline Materials

Published online by Cambridge University Press:  15 February 2011

D. Wolf
Affiliation:
E-mail address: [email protected].
S. R. Phillpot
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439.
P. Keblinski
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439.
Get access

Abstract

Atomistic simulations show that high-energy grain boundaries in nanocrystalline copper and nanocrystalline silicon are highly disordered. In the case of silicon the structures of the grain boundaries are essentially indistinguishable from that of bulk amorphous silicon. Based on a free-energy argument, we suggest that below a critical grain size nanocrystalline materials should be unstable with respect to the amorphous phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gleiter, H., Proc. Second Risø Int. Symp. on Metallurgy and Materials Science, edited by Hansen, N., Horsewell, A., Leffers, T. and Lilholt, H. (Risø National Laboratory, Roskilde, Denmark, 1981), p. 15.Google Scholar
2. Birringer, R., Gleiter, H., Klein, H. P. and Marquardt, P., Phys. Lett. A 102, 365 (1984).Google Scholar
3. Zhu, X., Birringer, R., Herr, U. and Gleiter, H., Phys. Rev. B 35, 9085 (1987).Google Scholar
4. Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).Google Scholar
5. Phillpot, S. R., Wolf, D. and Gleiter, H., J. Appl. Phys. 78, 847 (1995).Google Scholar
6. Phillpot, S. R., Wolf, D. and Gleiter, H., Scripta Metall. Mater. 33, 1245 (1995).Google Scholar
7. Rosenhain, W. and Humfrey, J. C. W., J. of the Iron and Steel Institute 87, 219 (1913);Google Scholar
Rosenhain, W. and Ewen, D., J. of the Institute of Metals 10, 119 (1913).Google Scholar
8. Wolf, D., Wang, J., Phillpot, S. R. and Gleiter, H., Phys. Rev. Lett. 74, 4786 (1995).Google Scholar
9. Wang, J., Wolf, D., Phillpot, S. R. and Gleiter, H., Phil. Mag. A 73, 517 (1996).Google Scholar
10. Rupp, J. and Birringer, R., Phys. Rev. B 36, 7888 (1987);Google Scholar
Tschöpe, A. and Birringer, R., Acta Metall. Mater. 41, 2791 (1993); Phil. Mag. B 68, 2223 (1993).Google Scholar
11. Klein, H. G., Diplom Thesis, Universität des Saarlandes, Nov. 1992.Google Scholar
12. Wolf, D., Wang, J, Phillpot, S. R. and Gleiter, G., Phys. Lett. A. 205, 274 (1995).Google Scholar
13. Veprek, S., Iqbal, Z., Oswald, H. R. and Webb, A. P., J. Phys. C 14, 295 (1981).Google Scholar
14. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
15. Keblinski, P., Phillpot, S. R., Wolf, D. and Gleiter, H., submitted to Acta Metall. Mater..Google Scholar
16. Keblinski, P., Phillpot, S. R., Wolf, D. and Gleiter, H., submitted to J. Amer. Ceram. Soc..Google Scholar