Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-08T04:53:26.921Z Has data issue: false hasContentIssue false

Atomistic Simulation of Grain Boundaries of the Twin Limited Structure in Ni3Al

Published online by Cambridge University Press:  22 February 2011

Maria-Lynn Turi
Affiliation:
Department of Materials and Metallurgical Engineering, Queen’s University, Kingston, Ontario, CANADA, K7L 3N6
R. Zugic
Affiliation:
Department of Materials and Metallurgical Engineering, Queen’s University, Kingston, Ontario, CANADA, K7L 3N6
B. Szpunar
Affiliation:
Department of Materials and Metallurgical Engineering, Queen’s University, Kingston, Ontario, CANADA, K7L 3N6
U. Erb
Affiliation:
Department of Materials and Metallurgical Engineering, Queen’s University, Kingston, Ontario, CANADA, K7L 3N6
G. Palumbo
Affiliation:
Department of Materials and Metallurgical Engineering, Queen’s University, Kingston, Ontario, CANADA, K7L 3N6
V. Krstic
Affiliation:
Department of Materials and Metallurgical Engineering, Queen’s University, Kingston, Ontario, CANADA, K7L 3N6
Get access

Abstract

Embedded atom method molecular dynamics simulations of low Σ grain boundaries in Ni3Al are presented. The results show that the grain boundary plane has a larger effect on grain boundary energy than the Σ value, rigid body translations and stoichiometry. Assessment of the energies of Σ3n (n ≥ 1) grain boundaries in Ni3Al for various grain boundary planes indicates that only the Σ3 grain boundary is energetically preferred. The implications of this result for the development of the twin limited structure based on energetic considerations are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ogura, T., Hanada, S., Masumoto, T., Izumi, O., Met. Trans. A 16A 441 (1985)Google Scholar
2 Aoki, K., Izumi, O., J. Japan Inst. Metals 43 1190 (1979)Google Scholar
3 Liu, C.T., White, C.L., Horton, J.A., Acta Metall. 33 213 (1985)Google Scholar
4 Taub, A.I., Briant, C.L., Acta Metall. 35 1597 (1987)Google Scholar
5 Lin, H., Pope, D.P., Acta Metall. Mater. 41 553 (1993)Google Scholar
6 Lin, H., Pope, D.P., Proceedings of the 3rd International Conference on High Temperature Intermetallics, 16–19 May 1994, San Diego, California, to be published in Mat. Sci. Eng. A Google Scholar
7 Watanabe, T., Mater. Sci. Forum, 46 25 (1989)Google Scholar
8 Aust, K.T., Erb, U., Palumbo, G., in “Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures” eds. Natasi, M. et al., Kluwer Academic Publishers, (1993) The Netherlands, pl07Google Scholar
9 Aust, K.T., Erb, U., Palumbo, G., Mat. Sci. Eng. A A176 329 (1994)Google Scholar
10 Palumbo, G., Aust, K.T., Erb, U., King, P.J., Brennenstuhl, A.M., Lichtenberger, P.C., Phys. Stat. Solidi A 131 425 (1992)Google Scholar
11 Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B B33 7983 (1986)Google Scholar
12 Eberhart, M.E., Vvedensky, D.D., Mater. Sci. Forum, 46 169 (1989)Google Scholar
13 Kioussis, N., Watanabe, H., Hemker, R.G., Gourdin, W., Gonis, A., Johnson, P.E., Mat. Res. Soc. Symp. Proc. 319 363 (1994)Google Scholar
14 Muller, D.A., Batson, P.E., Subramanian, S., Sass, S.L., Silcox, J., Mat. Res. Soc. Symp. Proc. 319 299 (1994)Google Scholar
15 Palumbo, G., Aust, K.T., “Special Properties of Σ Grain Boundaries,” in Atomic Level Properties of Interface Materials, eds. Wolf, D. and Yip, S., Chapman and Hall, London, (1992) P190 Google Scholar
16 King, A.H., Yoo, M.H., Mat. Res. Soc. Symp. Proc. 81 99 (1987)Google Scholar
17 Lim, L.C., Raj, R., Acta Metall. 32 (1984) 1177 (1984)Google Scholar
18 Don, J., and Majundar, S., Acta Metall. 34 961 (1986)Google Scholar
19 Palumbo, G., Aust, K.T., in “Recrystallization ’90” ed. Chandra, T., The Metallurgical Society of AIME, (1990) p101 Google Scholar
20 Zhilyayev, A.P., Gertsman, V.Yu., Mishin, O.V., Pshenichnyuk, A.I., Aleksandron, I.V., Valiev, R.Z., Acta Metall. Mater. 41 2657 (1993)Google Scholar
21 Chiba, A., Hanada, S., Watanabe, S., Abe, T., Obana, T., Acta Metall. Mater. 42 1733 (1994)Google Scholar
22 Farkas, D., Lewus, M.O., Rangarajan, V., Scripta Metall. 22 1195 (1988)Google Scholar
23 Jang, H., Farkas, D., De Hosson, J.T.M., J. Mater. Res. 7 1707 (1992)Google Scholar
24 Mackenzie, R.A.D., Vaudin, M.D., Sass, S.L., Mat. Res. Soc. Symp. Proc. 122 461 (1988)Google Scholar
25 Pettifor, D.G., Aoki, M., Gumbsch, P., Horsfield, A.P., Nguyen Manh, D., and Vitek, V., Proceedings of the 3rd International Conference on High Temperature Intermetallics, 16–19 May 1994, San Diego, California, to be published in Mat. Sci. Eng. A Google Scholar
26 Foiles, S.M. and Daw, M.S., J. Mater. Res. 2 5 (1987)Google Scholar
27 Daw, M.S., Foiles, S.M. and Baskes, M.S., Mater. Sci. Rep. 9 251 (1993)Google Scholar
28 Chen, S.P., Srolovitz, D. J., Voter, A.F., J. Mater. Res. 4 62 (1989)Google Scholar
29 Turi, et al., to be publishedGoogle Scholar
30 Wolf, D., Acta Metall. Mater. 38 781 (1990)Google Scholar
31 Lin, D., Chen, D., “Intergranular and Interphase Boundaries in Materials” J. de Phys. (Paris) Colloque CI 51 no1 227 (1990)Google Scholar
32 Pestman, B.J., DeHosson, J.Th.M., Vitek, V., Schapink, F.W., Phil. Mag. A 64 951 (1991)Google Scholar
33 Yoo, M.H., Daw, M.S., Baskes, M.I., “Atomistic Simulation of Materials: Beyond Pair Potentials “Chicago, Illinois 25–30 September 1988, Plenum Press (1990) New York, p401 Google Scholar
34 Turi, M.L., Weatherly, G.C., and Purdy, G.R., Proceedings of the 3rd International Conference on High Temperature Intermetallics, 16–19 May 1994, San Diego, California, to be published in Mat. Sci. Eng. A Google Scholar