Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:48:28.584Z Has data issue: false hasContentIssue false

Atomistic Simulation of Dislocation-Defect Interactions in Cu

Published online by Cambridge University Press:  21 March 2011

B. D. Wirth*
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
V. V. Bulatov
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
T. Diaz de la Rubia
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
*
aCorresponding author contact information: phone (925) 424-9822, fax (925) 423-7040, [email protected]
Get access

Abstract

The mechanisms of dislocation-defect interactions are of practical importance for developing quantitative structure-property relationships, mechanistic understanding of plastic flow localization and predictive models of mechanical behavior in metals under irradiation. In copper and other face centered cubic metals, high-energy particle irradiation produces hardening and shear localization. Post-irradiation microstructural examination in Cu reveals that irradiation has produced a high number density of nanometer sized stacking fault tetrahedra. Thus, the resultant irradiation hardening and shear localization is commonly attributed to the interaction between stacking fault tetrahedra and mobile dislocations, although the mechanism of this interaction is unknown. In this work, we present a comprehensive molecular dynamics simulation study that characterizes the interaction and fate of moving dislocations with stacking fault tetrahedra in Cu using an EAM interatomic potential. This work is intended to produce atomistic input into dislocation dynamics simulations of plastic flow localization in irradiated materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mansur, L. K. and Bloom, E. E., J. of Metals, 34 (1982) 23.Google Scholar
2. Lucas, G. E., J. Nuc. Mat. 206 (1993) 287.Google Scholar
3. Singh, B. N. and Zinkle, S. J., J. Nuc. Mat.. 206 (1993) 212.Google Scholar
4. Trinkaus, H., Singh, B. N. and Foreman, A. J. E., J. Nuc. Mat. 251 (1997) 172.Google Scholar
5. Victoria, M., Baluc, N., Bailat, C., Dai, Y., Luppo, M. I., Schaublin, R. and Singh, B. N., J. Nuc. Mat. 276 (2000) 114.Google Scholar
6. Dai, Y., Victoria, M., Mat. Res. Soc. Symp. Proc., 439 (1997) 319.Google Scholar
7. Ghoniem, N.M., Tong, S.-S. and Sun, L.Z., Phys. Rev. B, 139(1) (2000) 913.Google Scholar
8. Rubia, T. Diaz de la and Guinan, M. W., Phys. Rev. Lett. 66 (1992) 655.Google Scholar
9. Phythian, W. J., Stoller, R. E., Foreman, A. J. E., Calder, A. F. and Bacon, D. J., J. Nucl. Mat. 223 (1995) 245.Google Scholar
10. Averback, R. S. and Rubia, T. Diaz de la, Solid State Physics, 51 (1998) 281.Google Scholar
11. Osetsky, Y. N., Bacon, D. J., Serra, A., Singh, B. N., and Golubov, S. I. Y., J. Nucl. Mat. 276 (2000) 65.Google Scholar
12. Wirth, B. D., Bulatov, V. and Rubia, T. Diaz de la, J. Nuc. Mat. (2000) in press.Google Scholar
13. Caturla, M. J., Soneda, N., Alonso, E. A., Wirth, B. D. and Rubia, T. Diaz de la, J. Nuc. Mat. 276 (2000) 13.Google Scholar
14. Silcox, J. and Hirsch, P. B., Phil. Mag., 4 (1959) 72.Google Scholar
15. Osetsky, Y. N. and Bacon, D. J., this conference proceedings.Google Scholar
16. Rubia, T. Diaz de la and Guinan, M. W., J. Nuc. Mat., 174 (1990) 151.Google Scholar
17. Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev. B, 33 (1986) 7983.Google Scholar
18. Ghaly, M. and Averback, R. S., personal communication.Google Scholar
19. Rodney, D. and Martin, G., Phys. Rev. B 61 (2000) 8714.Google Scholar