Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T07:14:28.065Z Has data issue: false hasContentIssue false

Atomistic modeling of Ru nanocluster formation on graphene/Ru(0001): Thermodynamically versus kinetically directed-assembly

Published online by Cambridge University Press:  07 February 2013

Y. Han
Affiliation:
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
A. K. Engstfeld
Affiliation:
Institute of Surface Chemistry and Catalysis, Ulm University, D-89069, Ulm, Germany
C.-Z. Wang
Affiliation:
Ames Laboratory—USDOE, Iowa State University, Ames, Iowa 50011, USA
L. D. Roelofs
Affiliation:
Colgate University, Hamilton, New York, 13346, USA
R. J. Behm
Affiliation:
Institute of Surface Chemistry and Catalysis, Ulm University, D-89069, Ulm, Germany
J. W. Evans
Affiliation:
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA Ames Laboratory—USDOE, Iowa State University, Ames, Iowa 50011, USA
Get access

Abstract

Atomistic lattice-gas models for thermodynamically and kinetically directed assembly are applied to Ru nanocluster formation on a monolayer of graphene supported on Ru(0001) at 309 K. Nanocluster density, mean size, height distribution, and spatial ordering are analyzed by kinetic Monte Carlo simulations. Both models can reproduce the experimental data, but additional density functional theory analysis favors the former.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Marchini, S., Günther, S., and Wintterlin, J., Phys. Rev. B 76, 075429 (2007).CrossRefGoogle Scholar
Pan, Y., Shi, D.-X, and Gao, H.-J., Chin. Phys. 16, 3151 (2007).Google Scholar
Vázquez de Parga, A. L., Calleja, F., Borca, B., Passeggi, M. C. G., Hinarejos, J. J., Guinea, F., and Miranda, R., Phys. Rev. Lett. 100, 056807 (2008).CrossRefGoogle Scholar
Borca, B., Barja, S., Garnica, M., Minniti, M., Politano, A., Rodriguez-García, J. M., Hinarejos, J. J., Farías, D., Vázquez de Parga, A. L., and Miranda, R, New J. Phys. 12, 093018 (2010).CrossRefGoogle Scholar
Moritz, W., Wang, B., Bocquet, M.-L., Brugger, T., Greber, T., Wintterlin, J., and Günther, S., Phys. Rev. Lett. 104, 136102 (2010).CrossRefGoogle Scholar
Wang, B., Günther, S., Wintterlin, J., and Bocquet, M.-L., New J. Phys. 12, 043041 (2010).CrossRefGoogle Scholar
Pan, Y., Gao, M., Huang, L., Liu, F., and Gao, H.-J., Appl. Phys. Lett. 95, 093106 (2009).CrossRefGoogle Scholar
Donner, K. and Jakob, P., J. Chem. Phys. 131, 164701 (2009).CrossRefGoogle Scholar
Zhao, Z., Gao, F., and Goodman, D.W., Surf. Sci. 604, L31 (2010).CrossRefGoogle Scholar
Sutter, E., Albrecht, P., Wang, B., Bocquet, M.-L., Wu, L., Zhu, Y., and Sutter, P., Surf. Sci. 605, 1676 (2011).CrossRefGoogle Scholar
Engstfeld, A. K., Hoster, H. E., Behm, R. J., Roelofs, L. D., Liu, X., Wang, C.-Z., Han, Y., and Evans, J. W., Phys. Rev. B 86, 085442 (2012).CrossRefGoogle Scholar
Evans, J. W., Thiel, P. A., and Bartelt, M. C., Surf. Sci. Rep. 61, 1 (2006).CrossRefGoogle Scholar
Wang, B., Bocquet, M.-L., J. Phys. Chem. Lett. 2, 2341 (2011).CrossRefGoogle Scholar