Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:30:09.300Z Has data issue: false hasContentIssue false

Atomic structure, Electronic States, and Stability of Icosahedral Quasicrystals

Published online by Cambridge University Press:  01 February 2011

Eeuwe S. Zijlstra
Affiliation:
Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada
Shyamal K. Bose
Affiliation:
Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada
Get access

Abstract

Several existing models of icosahedral quasicrystals (QCs) are improved upon and studied by ab initio electronic structure methods. The following approach is used to optimize the models: 1) interchange of atoms in the existing (skeletal) models based on available knowledge of the local atomic environments, and 2) subsequent relaxation of the atomic positions using forces determined via first principles density functional methods. After minimizing the total energy, we investigate the ground state, and compare calculated results with available photo-emission spectroscopy (PES) and Mössbauer spectroscopy data. Significant improvement with respect to the starting (skeletal) model is achieved in several cases. We also examine the validity of the concept of negative valences of the transition metal atoms in QCs as advanced by Friedel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sugiyama, K., Kaji, N., and Hiraga, K., Acta Crystallograph. Sect. C 54, 445 (1998).Google Scholar
2. Zijlstra, E. S. and Bose, S. K., Phys. Rev. B 67, 224204 (2003).Google Scholar
3. Andersen, O. K., Phys. Rev. B 12, 3060 (1975).Google Scholar
4. Belin, E. et al., J. Phys.: Condens. Matter 4, 1057 (1992).Google Scholar
5. Fujiwara, T., Yamamoto, S., and Trambly de Laissardière, G., Phys. Rev. Lett. 71, 4166 (1993)Google Scholar
6. Cockayne, E. et al., J. Non-Cryst. Solids 153 & 154, 33 (1993).Google Scholar
7. Zijlstra, E. S., Kortus, J., Krajcč, M., Stadnik, Z. M., and Bose, S. K. (unpublished).Google Scholar
8. Stadnik, Z. M. et al., Phys. Rev. B 55, 10938 (1997).Google Scholar
9. Stadnik, Z. M., Takeuchi, T., Tanaka, N., and Mizutani, U., J. Phys.: Condens. Matter 15, 6365 (2003).Google Scholar
10. Quandt, A. and Elser, V., Phys. Rev. B 61, 9336 (2000).Google Scholar
11. Stadnik, Z. M., Purdie, D., Baer, Y., and Lograsso, T. A., Phys. Rev. B 64, 214202 (2001).Google Scholar
12. Stadnik, Z. M. in Physical Properties of Quasicrystals, edited by Stadnik, Z. M. (Springer, Berlin, 1999), pp. 257293.Google Scholar
13. Schwarz, K., Blaha, P., and Madsen, G. K. H., Comp. Phys. Commun. 147, 71 (2002).Google Scholar
14. Palenzona, A., J. Less-Common Metals 25, 367 (1971).Google Scholar
15. MacDonald, A. H., Pickett, W. E., and Koelling, D. D., J. Phys. C 13, 2675 (1980).Google Scholar
16. Tamura, R. et al., Phys. Rev. B 65, 224207 (2002).Google Scholar
17. Ishii, Y. and Fujiwara, T., Phys. Rev. Lett. 87, 206408 (2001).Google Scholar
18. Friedel, J., Helv. Phys. Acta 61, 538 (1988).Google Scholar
19. Gonze, X. et al., Comp. Mater. Sci. 25, 478 (2002).Google Scholar