Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T12:49:04.445Z Has data issue: false hasContentIssue false

Atomic Model of CdSe QDs Containing Density Waves as Derived from PDF Analysis

Published online by Cambridge University Press:  17 July 2013

B. Palosz
Affiliation:
Institute of High Pressure Physics PAS, ul. Sokolowska 29-37, 01-142 Warsaw, Poland
W. Palosz
Affiliation:
Brimrose Corporation, Sparks, Md 21152, USA
P. Wijewarnasuriya
Affiliation:
Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Md 20783-1197, USA
S. Gierlotka
Affiliation:
Institute of High Pressure Physics PAS, ul. Sokolowska 29-37, 01-142 Warsaw, Poland
K. Skrobas
Affiliation:
Institute of High Pressure Physics PAS, ul. Sokolowska 29-37, 01-142 Warsaw, Poland
S. Stelmakh
Affiliation:
Institute of High Pressure Physics PAS, ul. Sokolowska 29-37, 01-142 Warsaw, Poland
Get access

Abstract

Using a new methodology of elaboration of PDF data (G(r) function), which is based on the analysis of individual inter-atomic distances (ri), a function describing differences between average inter-atomic distances in CdSe nanograins derived experimentally and those in the parent bulk crystal was determined. Based on that methodology a unique atomic architecture of CdSe QDs is proposed. The results show that a good knowledge about the grain surface of nanocrystals alone may be insufficient for understanding the nanomaterials properties, and that the real atomic structure of the interior of nanograins is of importance as well.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bawendi, M.G., Kortan, A.R., Steigerwald, M.L. and Brus, L.E., J. Chem. Phys. 91 (1989) 7282.CrossRefGoogle Scholar
Dabbousi, B.O., Ridriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., J. Phys. Chem. B, 101 (1997) 9463.CrossRefGoogle Scholar
Murray, C.B., Norris, D.J., Bawendi, M.G., J. Am. Chem. Soc., 115 (1993) 8706.CrossRefGoogle Scholar
Masadeh, A.S., Bozin, E.S., Farrow, C.L., Paglia, G., Juhas, P., Billinge, S.J.L., Karkamkar, A., Kanatzidis, M.G., Phys. Rev. B, 76 (2007) 115413.CrossRefGoogle Scholar
Pradhan, S.K., Deng, Z.T., Tang, F., Wang, C., Ren, Y., Moeck, P., Petkov, V., J. Appl. Phys., 102 (2007) 044304.CrossRefGoogle Scholar
Mahler, B., Spinicelli, P., Buil, S., Quelin, X., Hermier, J.-P., and Dubertret, B., Nature Mat., 7 (2008) 659.CrossRefGoogle Scholar
Qiu, X., Thompson, J.W., and Billinge, S.J.L., J. Appl. Cryst., 37 (2004) 678, http://www.pa.msu.edu/cmp/billinge-group/programs/PDFgetX2/.CrossRefGoogle Scholar
Farrow, C.L., Juhas, P., Liu, J.W.., Bryndin, D., Boin, E.S., Bloch, J., Proffen, Th. and Billinge, S.J.L., J. Phys.: Condens. Matter, 19 (2007) 335219.Google Scholar
Skrobas, K., Gierlotka, S., Stelmakh, S., and Palosz, B., NanoPDF Software Package; http://www.unipress.waw.pl/soft/crystallography/nanopdf.Google Scholar
Yu, W.W., Qu, L., Guo, W., and Peng, X., Chem. Mater., 15 (2003) 2854.CrossRefGoogle Scholar
Palosz, B.., Grzanka, E.., Gierlotka, S., Stelmakh, S., Z. Kristallographie., 225 (2010) 588.CrossRefGoogle Scholar
Palosz, B., Denver X-ray Conference Proceedings, Advances in X-ray Analysis , Volume 55 (2011).Google Scholar