Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:43:26.303Z Has data issue: false hasContentIssue false

Atomic Matching Across Internal Interfaces

Published online by Cambridge University Press:  22 February 2011

Karl L. Merkle*
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The atomic structure of internal interfaces in dense-packed systems has been investigated by high-resolution electron microscopy (HREM). Similarities between the atomic relaxations in heterophase Interfaces and certain largeangle grain boundaries have been observed. In both types of interfaces localization of misfit leads to regions of good atomic matching within the interface separated by misfit dislocation-like defects. It appears that, whenever possible, the GB structures assume configurations in which the atomic coordination is not too much different from the ideal lattice. It is suggested that these kinds of relaxations primarily occur whenever the translational periods along the GB are large or when the interatomic distances are incommensurate. Incorporation of low index planes into the GB appears to lead to preferred, i.e. low energy structures, that can be quite dense with good atomic matching across a large fraction of the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Merwe, J. H. van der, Proc. Phys. Soc. A 63, 616 (1950).Google Scholar
2. Matthews, J. W., Phil. Mag. 6, 1347 (1961).Google Scholar
3. Matthews, J. W., Coherent interfaces and misfit dislocations. (Academic Press, 1975). p. 560.Google Scholar
4. Honjo, G. and Yagi, K.. Current Topics in Materials Science, Volume 6 (North-Holland 1980) p. 195.Google Scholar
5. Weins, M., Chalmers, B., Gleiter, H. and Ashby, M. F., Scripta. Metall. 3, 601 (1969).Google Scholar
6. Wolf, D., Scripta Metall., to be published.Google Scholar
7. Mott, N. F., Proc. Phys. Soc. 60, 391 (1948).Google Scholar
8. Bollmann, W., Crystal defects and crystalline interfaces. (Springer, Berlin, 1970).Google Scholar
9. Smith, D. A. and Pond, R. C., Int. Met. Rev. 205, 61 (1976).Google Scholar
10. Pumphrey, P. H., Scripta Metall. 6, 107 (1972).Google Scholar
11. Ralph, B., Howell, P. R. and Page, T. F., Phys. Stat. Sol. (b) 55, 641 (1973).Google Scholar
12. Sutton, A. P. and Balluffi, R. W., Acta Metall. 35, 2177 (1987).Google Scholar
13. Wolf, D., J. Amer. Ceram. Soc. 67, 1 (1984).Google Scholar
14. Merkle, K. L. and Smith, D. J., Phys. Rev. Lett. 59, 2887 (1987).Google Scholar
15. Merkle, K. L., Reddy, J. F., Wiley, C. L. and Smith, D. J., J. de Physique 49, 251 (1988).Google Scholar
16. Merkle, K. L. and Smith, D. J., Ultramicroscopy 22, 57 (1987).Google Scholar
17. Merkle, K. L., Reddy, J. F., Wiley, C. L. and Smith, D. J., in Ceramic Microstructures '86 Role of Interfaces. edited by Pask, J. A. and Evans, A. G. (Plenum 1988) p. 241.Google Scholar
18. Wolf, D., J. de Physique 46, 197 (1985).Google Scholar
19. Wolf, D., in Ceramic Microstructures '86 Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Plenum 1988) p. 177.Google Scholar
20. Wolf, D., Acta Metall., to be published.Google Scholar