Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T05:03:00.087Z Has data issue: false hasContentIssue false

Atomic Dynamics in Complex Metallic Alloys

Published online by Cambridge University Press:  23 January 2013

Holger Euchner
Affiliation:
ITAP, Universität Stuttgart, Pfaffenwaldring 57/6 , 70550 Stuttgart, Germany SIMAP, Grenoble-INP, CNRS, UJF, BP 75,38402 St Martin d’Hères Cedex, France Institute of Materials Science and Technology, TU Vienna, Karlsplatz 13, 1040 Wien, Austria
Stephane Pailhès
Affiliation:
Université de Lyon1, CNRS, 69622 Villeurbanne, France
Tsunetomo Yamada
Affiliation:
Department of Materials Science and Technology, Tokyo University, Noda 278-8510, Japan
Ryuji Tamura
Affiliation:
Department of Materials Science and Technology, Tokyo University, Noda 278-8510, Japan
Tsutomu Ishimasa
Affiliation:
Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
Stephane Rols
Affiliation:
Institut Laue Langevin, BP 156, 38042 Grenoble, Cedex 9, France
Helmut Schober
Affiliation:
Institut Laue Langevin, BP 156, 38042 Grenoble, Cedex 9, France Université Joseph Fourier, UFR de Physique, 38041 Grenoble Cedex 9, France
Marek Mihalkovic
Affiliation:
Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia
Hans-Rainer Trebin
Affiliation:
ITAP, Universität Stuttgart, Pfaffenwaldring 57/6 , 70550 Stuttgart, Germany
Daniel Schopf
Affiliation:
ITAP, Universität Stuttgart, Pfaffenwaldring 57/6 , 70550 Stuttgart, Germany
Silke Paschen
Affiliation:
Institute of Solid State Physics, TU Vienna, Wiedener Hauptstr. 8-10, 1040 Wien, Austria
Amir Haghighirad
Affiliation:
Physikalisches Institut, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
Franz Ritter
Affiliation:
Physikalisches Institut, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
Wolf Assmus
Affiliation:
Physikalisches Institut, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
Yuri Grin
Affiliation:
MPI für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
Lien Nguyen
Affiliation:
Institute of Solid State Physics, TU Vienna, Wiedener Hauptstr. 8-10, 1040 Wien, Austria
Marc de Boissieu
Affiliation:
SIMAP, Grenoble-INP, CNRS, UJF, BP 75,38402 St Martin d’Hères Cedex, France
Get access

Abstract

Complex Metallic Alloys (CMAs) are metallic solids of high structural complexity, consisting of large numbers of atoms in their unit cells. Consequences of this structural complexity are manifold and give rise to a variety of exciting physical properties. The impact that such structural complexity may have on the lattice dynamics will be discussed. The surprising dynamical flexibility of Tsai-type clusters with the symmetry breaking central tetrahedron will be addressed for Zn6Sc, while in the Ba-Ge-Ni clathrate system the dynamics of encaged Ba guest atoms in the surrounding Ge-Ni host framework is analysed with respect to the experimentally evidenced strong reduction of lattice thermal conductivity. For both systems experimental results from neutron scattering are analyzed and interpreted on atomistic scale by means of ab initio and molecular dynamics simulations, resulting in a picture with the respective structural building blocks as the origin of the peculiarities in the dynamics.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Euchner, H, Yamada, T, Mihalkovic, M, Schober, H, Rols, S, Tamura, R, Ishimasa, T and de Boissieu, M 2012 J. Phys.: Condens. Matter 24 415403.Google Scholar
Takakura, H, Gomez, C P, Yamamoto, A, de Boissieu, M and Tsai, A P 2007 Nature Mat. 6 58.10.1038/nmat1799CrossRefGoogle Scholar
de Boissieu, M, Francoual, S, Mihalkovic, M, Shibata, K, Baron, A Q R, Sidis, Y, Ishimasa, T, Wu, D, Lograsso, T, Regnault, L P, Gähler, F, Tsutsui, S, Hennion, B, Bastie, P, Sato, T J, Takakura, H, Currat, R and Tsai, A P 2007 Nature Mat. 6 977.10.1038/nmat2044CrossRefGoogle Scholar
Tsai, A P, Guo, J Q, Abe, E, Takakura, H and Sato, T J 2000 Nature 408 537 10.1038/35046202CrossRefGoogle Scholar
Yamada, T, Tamura, R, Muro, Y, Motoya, K, Isobe, M and Ueda, Y 2010 Phys. Rev. B 82 134121.10.1103/PhysRevB.82.134121CrossRefGoogle Scholar
Ishimasa, T, Kasano, Y, Tachibana, A, Kashimoto, S and Osaka, K 2007 Phil. Mag. 87 2887.10.1080/14786430701373680CrossRefGoogle Scholar
Mihalkovic, M and Henley, C L 2011 Phil. Mag. 91 2548.10.1080/14786435.2010.543650CrossRefGoogle Scholar
Yamada, T, Euchner, H, Tamura, R and de Boissieu, M 2012 In preparation.Google Scholar
Bee, M, Quasielastic neutron scattering: principles and applications in solid state chemistry, biology and materials science. (Adam Hilger, 1988)Google Scholar
Stadler, J, Mikulla, K and Trebin, H R 1997 Int. J. Mod. Phys. C 8 1131.10.1142/S0129183197000990CrossRefGoogle Scholar
Rog, T, Murzyn, K, Hinsen, K and Kneller, G R 2003 J. Comput. Chem. 24 657.10.1002/jcc.10243CrossRefGoogle Scholar
Euchner, H, Mihalkovic, M, Gahler, F, Johnson, M, Schober, H, Rols, S, Suard, E, Bosak, A, Ohhashi, S, Tsai, A P, Lidin, S, Gomez, C, Custers, J, Paschen, S and de Boissieu, M 2011 Phys. Rev. B 83 144202.10.1103/PhysRevB.83.144202CrossRefGoogle Scholar
Christensen, M, Abrahamsen, A B, Christensen, N B, Juranyi, F, Andersen, N H, Lefmann, K, Andreasson, J, Bahl, C R H and Iversen, B B 2008 Nat Mater 7 811.10.1038/nmat2273CrossRefGoogle Scholar
Koza, M, Johnson, M, Viennois, R, Mutka, H, Girard, L and Ravot, D 2008 Nature Mat 7 805.10.1038/nmat2260CrossRefGoogle Scholar
Lee, C H, Hase, I, Sugawara, H, Yoshizawa, H, Sato, H, 2006 J. Phys. Soc. Jpn. 75 123602.10.1143/JPSJ.75.123602CrossRefGoogle Scholar
Koza, M, Johnson, M, Mutka, H, Rotter, M, Nasir, N, Grytsiv, A, Rogl, P, 2010 Phys. Rev. B 82, 214301.10.1103/PhysRevB.82.214301CrossRefGoogle Scholar
Yang, C P, Wang, H, Iwasa, K, Kohgi, M, Sugawara, H, Sato, H, 2007 J. Phys. Condens. Matter 19, 226214.10.1088/0953-8984/19/22/226214CrossRefGoogle Scholar
Pohl, R O, 1962 Phys. Rev. Lett. 8, 481.10.1103/PhysRevLett.8.481CrossRefGoogle Scholar
Klein, M V, 1969 Phys. Rev. 186, 839.10.1103/PhysRev.186.839CrossRefGoogle Scholar
Yang, J, Morelli, D T, Meisner, G P, Chen, W, Dyck, J S, Uher, C, 2003 Phys. Rev. B 67, 165207.10.1103/PhysRevB.67.165207CrossRefGoogle Scholar
Cohn, J M, Nolas, G S, Fessatidis, V, Metcalf, T H, Slack, G A, 1999 Phys. Rev. Lett. 82, 779.10.1103/PhysRevLett.82.779CrossRefGoogle Scholar
English, N J, Tse, J S, 2009 Phys. Rev. Lett. 103, 015901 10.1103/PhysRevLett.103.015901CrossRefGoogle Scholar
Toberer, E S, Zevalkink, A, Snyder, G J, 2011 J. Mater. Chem 21, 15843 10.1039/c1jm11754hCrossRefGoogle Scholar
Nguyen, L, Aydemir, U, Baitinger, M, Bauer, E, Borrmann, H, Burkhardt, U, Custers, J, Haghighirad, A, Hofler, R, Luther, K, Ritter, F, Assmus, W, Grin, Y, 2010 Dalton Trans. 39, 1071 10.1039/B919791PCrossRefGoogle Scholar
Hafner, J, Krajci, M, 1993 J. Phys. Condens. Matter 5, 2489 10.1088/0953-8984/5/16/008CrossRefGoogle Scholar
Euchner, H, Pailhes, S, Nguyen, L, Assmus, W, Ritter, F, Haghighirad, A, Grin, Y, Paschen, S, de Boissieu, M, Phys. Rev. B, accepted Google Scholar