Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T08:03:12.838Z Has data issue: false hasContentIssue false

Asymmetries in Amorphous Silicon Devices

Published online by Cambridge University Press:  28 February 2011

Z E. Smith
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

The consequences of the asymmetries in the density of electronic states of hydrogenated amorphous silicon on the behavior of electronic devices are discussed. Asymmetries in the relative widths of valence and conduction bandtails, the position of the dangling-bond states within the gap, and the occupation statistics of non-correlated defects are shown to affect the performance of p-i-n solar cells, and explain their superior performance and stability when compared with such devices illuminated through the n-layer (n-i-p). The device-modeling concepts which emerge help explain the differences between cell degradation via light exposure under various bias conditions, and cell degradation by dark forward bias.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Uchida, Y., Kamiyama, M., Ichikawa, Y., Hama, T., and Sakai, H., in Technical Digest of the International Photovoltaic Science and Engineering Conference (PVSEC), edited by Konagai, M. (Nippon, Tokyo, 1984) p. 217.Google Scholar
[2] Xi, J.P., Tsuo, Y.S., Trefny, J.U., and McMahon, T.J., Proceedings of the 18th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1985) [in press].Google Scholar
[3] Yamagishi, H., Kida, H., Kamada, T., Okamoto, H., and Hamakawa, Y., Appl. Phys. Lett. 47, 860 (1985).Google Scholar
[4] Hack, M. and Shur, M., J. Appl. Phys. 58, 1656 (1985).Google Scholar
[5] Redfield, D., Appl. Phys. Lett. 48, 846 (1986).Google Scholar
[6] Kr¨hler, W., Pfleiderer, H., Plättner, R., and Stetter, W., AIP Conf. Proc. No. 120, (AIP, New York, 1984) p. 311.Google Scholar
[7] Shockley, W. and Read, W.T., Phys. Rev. 87, 835 (1952); R.N. Hall, Phys. Rev. 87, 387 (1952).Google Scholar
[8] Rose, A., Concepts in Photoconductivity and Allied Problems (Krieger, Huntington NY, 1978) pp. 2433.Google Scholar
[9] This nomenclature is somewhat counter-intuitive, as we are used to thinking of doping-related acceptor levels in the lower half of the gap; it comes about because the acceptor-like defect can be neutral or accept an electron.Google Scholar
[10] Sah, C.-T., Proc. of the IEEE 55, 672 (1967)Google Scholar
[11] LeComber, P.G. and Spear, W.E., Phil. Mag. B 53, L1 (1986).Google Scholar
[12] Stutzmann, M., Jackson, W.B., and Tsai, C.C., Phys. Rev. B 32, 23 (1985).Google Scholar
[13] Schade, H., Smith, Z E. and Catalano, A., Solar Energy Materials 10, 317 (1984).Google Scholar
[14] Hack, M. and Shur, M., J. Appl. Phys. 59, 2222 (1986); J. Appl. Phys. 58, 997 (1985); J. Appl. Phys. 55, 4413 (1984); J. Appl. Phys. 54, 5858 (1983).Google Scholar
[15] Guha, S. and Hack, M., J. Appl. Phys. 58, 1683 (1986).Google Scholar
[16] Schwartz, R.J., Gray, J.L. and Turner, G.B., in Technical Digest of the International PVSEC-1, edited by Konagai, M. (Nippon, Tokyo, 1984) p. 123; R.J. Schwartz, J.L. Gray, G.B. Turner, D. Kanani, and H. Ullal, Proceedings of the 17th IEEE Photovoltaics Specialists Conference (IEEE, New York, 1984) p. 369.Google Scholar
[17] Crandall, R.S., J. Appl. Phys. 54, 7176 (1983); J. Appl. Phys. 55, 4418 (1984); J. Appl. Phys. 53, 3350 (1982); RCA Review 42, 458 (1981).Google Scholar
[18] Nonomura, S., Okamoto, H., Kida, H., and Hamakawa, Y., Jap. J. Appl. Phys. 21–2, 279 (1982); H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, and Y. Hamakawa, J. Appl. Phys. 54, 3236 (1983).Google Scholar
[19] Faughnan, B. and Crandall, R., Appl. Phys. Lett. 44, 537 (1984).Google Scholar
[20] Smith, Z E. and Wagner, S., in Proceedings of the 18th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1985) [in press].Google Scholar
[21] Okamoto, H., Kida, H., Kamada, T., and Hamakawa, Y., Phil. Mag. B 52, 1115 (1985).Google Scholar
[22] Taniguchi, H., Konagai, M., Lim, K.S., Sichanugrist, P., Komori, K., and Takahashi, K., Jap. J. Appl. Phys. 21–2, 219 (1982).Google Scholar
[23] Bennett, M.S., Newton, J.L., Arya, R.R., and Rajan, K., in Proceedings of the 18th IEEE Photovoltaics Specialists Conference (IEEE, New York, 1985) [in press].Google Scholar
[24] Staebler, D.L., Crandall, R.S., and Williams, R., Appl. Phys. Lett. 39, 733 (1981).CrossRefGoogle Scholar
[25] Smith, Z E., Wagner, S., and Faughnan, B.W., Appl. Phys. Lett. 46, 1078 (1985).Google Scholar
[26] Nakamura, N., Watanabe, K, Nishikuni, M., Hishikawa, Y., Tsuda, S., Nishiwaki, H., Ohnishi, M., and Kuwano, Y., J. Non-Cryst. Solids 59&60, 1139 (1983).Google Scholar