Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:34:33.519Z Has data issue: false hasContentIssue false

Applications of Organic Electro-Optic Materials in High Speed Electronic Processors

Published online by Cambridge University Press:  21 February 2011

G. F. Lipscomb
Affiliation:
Lockheed Research and Development Division Department 9702, Building 202 3251 Hanover St., Palo Alto, CA 94304
R. S. Lytel
Affiliation:
Lockheed Research and Development Division Department 9702, Building 202 3251 Hanover St., Palo Alto, CA 94304
A. J. Ticknor
Affiliation:
Lockheed Research and Development Division Department 9702, Building 202 3251 Hanover St., Palo Alto, CA 94304
J. Kenney
Affiliation:
Lockheed Research and Development Division Department 9702, Building 202 3251 Hanover St., Palo Alto, CA 94304
T. E. Van Eck
Affiliation:
Lockheed Research and Development Division Department 9702, Building 202 3251 Hanover St., Palo Alto, CA 94304
D. G. Girton
Affiliation:
Lockheed Research and Development Division Department 9702, Building 202 3251 Hanover St., Palo Alto, CA 94304
E. Binkley
Affiliation:
Lockheed Research and Development Division Department 9702, Building 202 3251 Hanover St., Palo Alto, CA 94304
Get access

Abstract

The exceptional electro-optic properties of poled polymer films, coupled with the power and flexibility of thin film fabrication and photolithographic processing, may make possible a new class of integrated optic systems combining the processing power of VLSI with a dense, high bandwidth, photonic interconnection and switching network. We report on the recent development and initial test results of two electro-optic polymer based integrated optic devices for optical interconnection applications. The first is an optical railtap for the distribution of many different optical signals from a single CW laser diode, and the second is a traveling wave Mach-Zehnder integrated optic modulator, which was modulated at frequencies up to 20 GHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lytel, R., Lipscomb, G.F., Kenney, J.T. and Binkley, E.S., “Large Scale Integration of Electro-optic Polymer Waveguides”, in Polymers for Lightwave and Integrated Optics: Technology and Applications, Hornak, L.A. ed., (Marcel Dekker, Planned 1991).Google Scholar
2 Van Eck, T. E., Ticknor, A. J., Lytel, R. S., and Lipscomb, G. F., Appl. Phys. Lett. 58, 1588 (1991).CrossRefGoogle Scholar
3 Girton, D. G., Kwiatkowski, S. L., Lipscomb, G. F., and Lytel, R. S., Appl. Phys. Lett. 58, 1730 (1991).CrossRefGoogle Scholar
4 Mohlmann, G. R. Horsthuis, W.H.G., McDonach, A., Copeland, M.J., Duchet, C., Fabre, P., Diemeer, M.B.J., Tramel, E.S., Suyten, F.M.M., Van Tamme, E., Baqero, P., and Van Daele, P., Proc. SPIE 1337, 215 (1990).CrossRefGoogle Scholar
5 Nonlinear Optical Properties of Organic Materials III, Proc. SPIE 1137, Khanarian, G., ed., July 1990.Google Scholar
6 Lytel, R., Lipscomb, G.F., and Thackara, J.I., “Recent Developments in Organic Electrooptic Devices”, in Nonlinear Optical Properties of Polymers, Heeger, A.J., Orenstein, J., and Ulrich, D.R., ed., Proc. Materials Research Society 109, 19 (1988).Google Scholar
7 Lalama, S.J. and Garito, A.F., Phys. Rev. A 20, 1179 (1979).CrossRefGoogle Scholar
8 Singer, K.D. and Garito, A.F., J. Chem. Phys. 75, 3572 (1981).CrossRefGoogle Scholar
9 Pugh, D. and Morley, J.O., “Molecular Hyperpolarizabilities of Organic Materials”, in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol.1, Chemla, D. and Zyss, J., ed., Academic Press, NY (1987), p. 193.CrossRefGoogle Scholar
10 Teng, C.C. and Garito, A.F., Phys. Rev. Lett. 50, 350 (1983).CrossRefGoogle Scholar
11 Singer, K.D., Sohn, J.E., and Kuzyk, M.G., “Orientationally Ordered Electro-optic Materials”, in Nonlinear Optical and Electro-active Polymers, Prasad, P.N. and Ulrich, D.R., ed., Plenum Press, New York (1988), p. 189.CrossRefGoogle Scholar
12 Singer, K. D., Sohn, J.E., and Lalama, S.J., Appl. Phys. Lett. 49, 248 (1986), and K.D. Singer, M.G. Kuzyk and J.E. Sohn, J Opt. Soc. Am. B4, 968 (1987).CrossRefGoogle Scholar
13 Williams, D.J., “Nonlinear Optical Properties of Guest-Host Polymer Structures”, in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol.1, Chemla, D. and Zyss, J., ed., Academic Press, NY (1987), p. 405 CrossRefGoogle Scholar
14 Thackara, J.I., Lipscomb, G. G., Stiller, M.A., Ticknor, A.J. and Lytel, R., Applied Physics Letters 52, 1031 (1988)CrossRefGoogle Scholar
15 Mohlmann, G. R., Horsthuis, W.H., van der Vorst, C.P., Proc. SPIE 1177, 67 (1989).Google Scholar
16 Beeson, K.W., Horn, K.A., McFarland, M., Nahata, A., Wu, C. and Yardley, J., “Organic Polymers as Guided Wave Materials”, in Materials for Nonlinear Optics, Marder, S.R., Sohn, J. E. and Stukey, G.D. ed, ACS Symposium Series 455, (1990).Google Scholar
17 Rochford, K.B., Zanoni, R., Gong, Q., and Stegeman, G.I., Appl. Phys. Lett. 55, 1161 (1989).CrossRefGoogle Scholar
18 Diemeer, M.B.H., Suyten, F.M.M., Trommel, E.S., McDonach, A., Copeland, J.M., Jenneskens, L.W. and Horsthuis, W.H.G., Electron. Lett. 26, 379 (1990).CrossRefGoogle Scholar
19 Singer, K. D., Holland, W. R., Kuzyk, M.G., Wolk, G. L., Katz, H.E., Schilling, M.L., Proc. SPIE 1147, 233 (1989).CrossRefGoogle Scholar
20 Lytel, R.S., Lipscomb, G.F., Kenney, J.T., Binkley, E.S. and Ticknor, A.J., Proc. SPIE 1215, 253 (1990).Google Scholar
21 Lytel, R.S., Kenney, J.T., Binkley, E.S. and Lipscomb, G.F., to be published.Google Scholar
22 Wu, J.W., Valley, J.F., Ermer, S., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., Lytel, R., Appl. Phys. Lett. Appl. Phys. Lett. 58, 225 (1991).CrossRefGoogle Scholar
23 Polymeric Materials for Electronics Packaging and Interconnection, Lupinski, J.H. and Moore, R.S., eds., Vol.407 of American Chemical Society Symposium (ACS, Washington, DC 1989). See also Polyimides, Vol. 1 &2, K.L. Mittal,ed.(Plenum Press, New York, 1984).CrossRefGoogle Scholar
24 Wu, J.W., Valley, J.F., Binkley, E.S., Kenney, J.T., Lytel, R., J. Appl. Phys. 69, May 15 (1991).Google Scholar
25 Hartman, D.H., Opt. Eng. 25, 1086 (1986).CrossRefGoogle Scholar
26 Lytel, R.S., Girton, D.G., Kenney, J.T., Lipscomb, G.F., Ticknor, T., Van Eck, T., Proc. SPIE 1389, 547 (1990).CrossRefGoogle Scholar
27 Lytel, R., Ticknor, A.J., Van Eck, T.E. and Lipscomb, G.F., Proceedings of the OSA, Photonic Switching “91, Salt Lake City, March 1991.Google Scholar
28 Krotky, S.K. and Alferness, R.C., “Ti:LiNbO3 Integrated Optics Technology”, in Integrated Optical Circuits and Components, Hutchenson, L. D. ed., Marcel Dekker Inc., New York, 1987, p.203.Google Scholar
29 Jungerman, R. L., Johnsen, C., McQuate, D. J., Salamaa, K., Zurakowski, M. P., Bray, R. C., Conrad, G., Cropper, D. and Hernday, P., J. Lightwave Technol. 8, 1363 (1990).CrossRefGoogle Scholar
30 Dolfi, D. W., Nazarathy, M. and Jungerman, R. L., Electron. Lett. 24, 528 (1988).CrossRefGoogle Scholar