Article contents
Application of the G'/D Raman Ratio for Purity Assessment of Multi-Walled Carbon Nanotubes
Published online by Cambridge University Press: 01 February 2011
Abstract
Carbonaceous purity assessment methods are being sought after for all types of carbon nanotubes as a means to standardize the material metrology. Our most recent work has evaluated chemical vapor synthesized multi-walled carbon nanotubes (MWNTs). This effort included a protocol for assessment involving qualitative information from scanning electron microscopy (SEM) images and quantitative information from thermogravimetric analysis (TGA) and Raman spectroscopy. Presently, the analysis using Raman spectroscopy on a constructed sample set has been extended to a second excitation energy (HeNe laser at 1.96 eV) and the similar trends in the relative Raman peak ratios have been measured. In contrast to the G-band, the D and G' peaks demonstrate a Raman shift that is excitation energy-dependent, consistent with the double resonance theory. However, the Raman ratio of IG'/ID is independent of excitation energy and is observed to be the most sensitive to MWNT carbonaceous purity. Application of this approach to MWNT arrays grown on SiO2 is compared to conventional bulk powders synthesized under similar conditions. The MWNT arrays show a high degree of vertical alignment based upon SEM and a measured carbonaceous purity using the IG'/ID ratio of 75% w/w.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
- 3
- Cited by