No CrossRef data available.
Article contents
Antiphase Boundary Calculations for the L12 Structure Using an Embedded Atom Method Model
Published online by Cambridge University Press: 26 February 2011
Abstract
A model based on the embedded atom method [1] has been used to calculate antiphase boundary (APB) energies of three low-index planes for alloys having the L12 structure. The lattice constant, cohesive energy, unrelaxed vacancy formation energy, bulk modulus, and average shear modulus for each element are used as inputs into the model. Effects of the APB orientation and of the range of interaction in the model are examined. Both unrelaxed and relaxed APB energies are compared with available experimental values and earlier theoretical results. A strong anisotropy was found in six of the seven alloys studied. The {111} APB energy was consistently smaller than that for the {110} APB, while the {100} APB energy was found to be very close to zero with very little difference between the unrelaxed and relaxed values. For both energy and relaxation amounts, the results did not vary much with the range of interaction, so that 3rd nearest-neighbor calculations were found to be satisfactory approximations.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991