Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T03:50:48.789Z Has data issue: false hasContentIssue false

Anti-diffusion barriers for gold-based metallization to GaN

Published online by Cambridge University Press:  01 February 2011

Anna Piotrowska
Affiliation:
[email protected], Institute of Electron Technology, Poland
Eliana Kaminska
Affiliation:
[email protected], Institute of Electron Technology, Poland
Marek Guziewicz
Affiliation:
[email protected], Institute of Electron Technology, Poland
Elzbieta Dynowska
Affiliation:
[email protected], Institute of Physics, Polish Academy of Sciences, Poland
Anna Stonert
Affiliation:
[email protected], Soltan Institute for Nuclear Studies, Poland
Andrzej Turos
Affiliation:
[email protected], Institute of Electronic Materials Technology, Poland
Stephan Figge
Affiliation:
[email protected], University of Bremen, Germany
Roland Kröger
Affiliation:
[email protected], University of Bremen, Germany
Detlef Hommel
Affiliation:
[email protected], University of Bremen, Germany
Get access

Abstract

We propose a new metallization scheme to p-GaN, where thin-film transition metal nitrides have been applied to improve thermal stability of gold-based metallization. In this metallization scheme the Pd/Au bilayer was used to form low-resistivity ohmic contact to p-GaN, while Ta-Si-N, Ti-Si-N, and Ti-W-N anti-diffusion barriers were used to protect contact metallization from interaction with Au overlayer. We present the details of optimization of process parameters of barrier layer fabrication and show that Ta0.34Si0.25Ni0.41 and Ti0.26Si0.0.17Ni0.57 thin films fabricated by reactive magnetron sputtering show excellent barrier properties under high temperature stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murakami, M. and Koide, Y., Critical Rev. in Solid St. and Mat. Sci. 23, 1 (1998).CrossRefGoogle Scholar
2. Li, Y.-L., Schumer, E.F., Graff, J.W., Osinsky, A., Schaff, W.F., Appl. Phys. Lett. 76, 2728 (2000).CrossRefGoogle Scholar
3. Kumakura, K., Makimoto, T., Kobayashi, N., Jpn. J. Appl. Phys. 42, 2254 (2003).CrossRefGoogle Scholar
4. Shiojima, K., McInturff, D. T., Woodall, J. M., Grudowski, P. A., Eiting, Ch. J., Dupuis, R.D., J. Electron. Mater. 29, 228 (1999).CrossRefGoogle Scholar
5. Ishikava, H., Kobayashi, S., Koide, Y., Yamazaki, S., Nagai, S., Umezaki, J., Koike, M., Murakami, M., J. Appl. Phys. 81, 1315 (1997).CrossRefGoogle Scholar
6. Koide, Y., Maeda, T., Kawakami, T., Fujita, S., Uemura, T., Shibata, N., Murakami, M., J. Electron. Mat. 28, 341 (1999).CrossRefGoogle Scholar
7. Chor, E.F., Zhang, D., Gong, H., Chen, G.L., Liew, T.Y.F., J. Appl. Phys. 90, 1242 (2001).CrossRefGoogle Scholar
8. Nicolet, M.-A., Thin Solid Films 52, 415 (1978).CrossRefGoogle Scholar
9. Dennermark, J., Boettcher, T., Figge, S., Einfield, S., Kroeger, R., Hommel, D., Kaminska, E., Piotrowska, A., Physica Status Solidi 1, 2537 (2004).Google Scholar