Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T14:14:35.095Z Has data issue: false hasContentIssue false

Anomalous Diffusion of Intrinsic Defects in K+ Implanted ZnO using Li as Tracer

Published online by Cambridge University Press:  20 March 2012

L. Vines
Affiliation:
Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
P.T. Neuvonen
Affiliation:
Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
A. Yu. Kuznetsov
Affiliation:
Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
J. Wong-Leung
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia Centre for Advanced Microscopy, The Australian National University, Canberra, ACT0200, Australia
C. Jagadish
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
B.G. Svensson
Affiliation:
Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
Get access

Abstract

Potassium (K) ions have been implanted in hydrothermally grown ZnO to a dose of 1 × 1015 cm-2, followed by isochronal annealing in a tube furnace (30min) and by rapid thermal annealing (30s) on two separate samples. For annealing temperatures below 700°C, only a minor redistribution of Li is observed behind the projected range of the K+ ions. At temperatures between 700 and 750°C, however, both annealing treatments show a wide region behind the implantation peak which is depleted of Li, and this depletion is used as a tracer to monitor diffusion of intrinsic defects like the Zn interstitial. The results are interpreted as Zn interstitials being released from the implanted region in a burst at temperatures above ∼700°C, followed by rapid migration, replacement of Li on Zn site through the kick-out mechanism, and migration of Li away from the active region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Janotti, A. and Van de Walle, C. G., Phys. Rev. B 76, 165202 (2007).Google Scholar
2. Janotti, A. and Van de Walle, C. G., Appl. Phys. Lett. 87, 122102 (2005).Google Scholar
3. Monakhov, E. V., Kuznetsov, A. Yu., and Svensson, B. G., J. Phys. D 42, 153001 (2009).Google Scholar
4. Van de Walle, C. G., Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
5. Janotti, A. and Van de Walle, C. G., Rep. Prog. Phys. 72, 126501 (2009)Google Scholar
6. Neuvonen, P.T., Vines, L., Kuznetsov, A. Yu., Svensson, B.G., Du, X.L., Tuomisto, F., Hallen, A., Interaction between Na and Li in ZnO, Appl Phys. Lett., 95, 242111, (2009)Google Scholar
7. Neuvonen, P.T., Vines, L., Knutsen, K.E., Azarov, A. Yu., Hallèn, A., Svensson, B.G., Kuznetsov, A. Yu., to be published Google Scholar
8. Lander, J.J., J. Phys. Chem. Solids, 15, 324 (1960)Google Scholar
9. Neuvonen, P.T., Vines, L., Venkatachalapathy, V., Zubiaga, A., Tuomisto, F., Hallèn, A., Svensson, B.G. and Kuznetsov, A. Yu., Phys. Rev. B, 84, 205202 (2011)Google Scholar
10. Børseth, T.M., Christensen, J. S., Maknys, K., Hall´en, A., Svensson, B. G., and Kuznetsov, A. Yu., Superlattices and Microstructures 38, 464 (2005).Google Scholar
11. Moe Børseth, T., Tuomisto, F., Christensen, J. S., Monakhov, E. V., Svensson, B. G., and Kuznetsov, A. Yu., Phys. Rev. B 77, 045204 (2008).Google Scholar
12. Johansen, K. M., Zubiaga, A., Makkonen, I., Tuomisto, F., Neuvonen, P. T., Knutsen, K. E., Monakhov, E. V., Kuznetsov, A. Yu., and Svensson, B. G., Phys. Rev. B 83, 245208 (2011).Google Scholar
13. Stolk, P.A., Gossmann, H.J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., Haynes, T.E., J. Appl. Phys., 81, 6031 (1997)Google Scholar
14. Janotti, A. and Van de Walle, C.G., Phys. Rev. B, 75, 165202 (2007).Google Scholar
15. Carvalho, A., Alkauskas, A., Pasquarello, A., Tagantsev, A.K., Setter, N., Phys. Rev. B, 80, 195205 (2009)Google Scholar
16. Look, D.C.., Leedy, K.D., Vines, L., Svensson, B.G., Zubiaga, A., Tuomisto, F., Doutt, D.R., Brillson, L.J., Phys. Rev. B, 84, 115202 (2011)Google Scholar