Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T06:24:18.307Z Has data issue: false hasContentIssue false

Anomalous behavior of confined-supercooled water near the bulk water hypothetical 2nd Critical Temperature

Published online by Cambridge University Press:  01 February 2011

F. Mansour
Affiliation:
Department of Physics, University of Waterloo, Waterloo ON, N2L 3G1
R. M. Dimeo
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive - Stop 8562 Gaithersburg, MD 20899–8562.
H. Peemoeller*
Affiliation:
Department of Physics, University of Waterloo, Waterloo ON, N2L 3G1
*
Author to whom correspondence should be addressed.
Get access

Abstract

High resolution inelastic neutron scattering measurements of the molecular dynamics of deeply supercooled water confined to a porous host, MCM-41 are reported. Results obtained near the critical temperature of water are discussed. Anomalous behavior near and below the glass transition temperature is also presented and discussed. Results are compared to those from earlier studies on supercooled water.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bellissent-Funel, M.-C., Bradley, K.F., Chen, S.-H., Lal, J. & Teixeira, J.. Physica A 201 , 277 (1993).Google Scholar
[2] Bellissent-Funel, M.-C., Chen, S.-H. & Zanotti, J.-M.. Phys. Rev. E 51, 4558 (1995).Google Scholar
[3] Holly, R., Peemoeller, H., Choi, C. & Pintar, M. M.. J. Chem. Phys. 108, 4183 (1998).Google Scholar
[4] Takahara, S., Nakano, M., Kittaka, S., et al. J. Phys. Chem. B 103, 5814 (1999).Google Scholar
[5] Zanotti, J.-M., Bellissent-Funel, M.-C. & Chen, S.-H.. Phys. Rev. E 59, 3084 (1999).Google Scholar
[6] Ricci, M.A. & Rovere, M.. J. Phys. IV France 10, Pr7187 (2000).Google Scholar
[7] Swenson, J., Bergman, R., Borjesson, L. & Howells, W.S.. J. Phys. IV France 10, Pr7195 (2000).Google Scholar
[8] Czihak, C., Muller, M., Schober, H. & Vogl, G.. J. Phys. IV France 10, Pr7199 (2000).Google Scholar
[9] Gallo, P. & Rovere, M.. J. Phys. IV France 10, Pr7203 (2000).Google Scholar
[10] Bordallo, H.N., Herwig, K.W., Dozier, W.D. & Drake, F.. J. Phys. IV France 10, Pr7207 (2000).Google Scholar
[11] Venuti, V., Crupi, V., Magazu, S., Majolino, D., Migliardo, P. & Bellissent-Funel, M.-C.. J. Phys. IV France 10, Pr7211 (2000).Google Scholar
[12] Morishige, K. & Kawano, K.. J. Chem. Phys. 110, 4867 (1999).Google Scholar
[13] Gehring, P.M. & Neumann, D.A.. Physica B 241–243, 64 (1998).Google Scholar
[14] Gotze, W., J. Phys.: Condens. Matter 11, A1 (1999).Google Scholar
[15] Chen, S. H., liao, C., Sciortino, F., Gallo, P. and Tartaglia, P., Phys. Rev. E, 59, 6 (1999).Google Scholar
[16] Lamanna, R. and Cannistraro, S., Phys. Rev. A, 46, 12 (1992)Google Scholar
[17] Nabokov, O. A., and Lubimov, Yu. A., Mol. Phys., 65, 6, 1473.Google Scholar
[18] Naberukhin, Y. I., J. Phys. A: Math. Gen., 19, L681 (1986).Google Scholar
[19] Stanley, H. E., Blumberg, R. L., Geiger, A., Mausbach, P. and Teixeira, J. J., J. Phys. (Paris), 45, C713, 1984.Google Scholar
[20] Stanley, H. E. and Teixeira, I. J., 73, 3404 (1980)Google Scholar
[21] Settles, M. and Doster, W., Faraday Discuss. 103, 269 (1996).Google Scholar
[22] Colmenero, J., Arbe, A., Alegria, A., Monkenbusch, M., and Richter, D., J. Phys: Condens. Matter, 11, A363 (1999).Google Scholar
[23] Mansour, F. and Peemoeller, H., in Preparation.Google Scholar
[24] Mansour, F., Dimeo, R. M., and Peemoeller, H. Phys. Rev. E 66, 041307 (2002).Google Scholar
[25] Rebelo, L. P. N., Debendetti, P. G., and Sastry, S. J., J. Chem. Phys. 109, 626 (1998).Google Scholar
[26] Mishima, O. and Stanley, H. E., Nature, 396, 329335 (1998)Google Scholar