Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T16:09:59.119Z Has data issue: false hasContentIssue false

Annealing Effects on Si Nanocrystal Nonvolatile Memories

Published online by Cambridge University Press:  01 February 2011

Panagiotis Dimitrakis
Affiliation:
[email protected], NCSR Demokritos, Institute of Microelectronics, Ag.Paraskevi, Greece
Caroline Bonafos
Affiliation:
[email protected], CEMES-CNRS, 29 rue Jeanne Marvig, TOULOUSE, 31400, France, 0562257911, 0562257999
Sylvie Schamm
Affiliation:
[email protected], CEMES-CNRS, 29 rue Jeanne Marvig, TOULOUSE, 31400, France, 0562257911, 0562257999
Pascal Normand
Affiliation:
[email protected], NCSR, IMEL, Aghia Paraskevi, Greece
G. Ben Assayag
Affiliation:
[email protected], CEMES, CNRS, Toulouse, France
Get access

Abstract

The effect of thermal treatments in oxidizing ambient on the structural and electrical properties of low-energy Si-implanted thin SiO2 layers which previously suffered or not high temperature annealing in inert ambient was investigated. Based on TEM examination, charge trapping evaluation and FN conduction analysis of the resulting Si-NC SiO2 matrices, a model taking into account the healing of excess silicon atoms introduced by implantation and the generation of Si interstitials by oxidation above and below the viscoelastic temperature of SiO2 is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 International Technology Roadmap for Semiconductors, ITRS, 2007, http://www.itrs.net net.Google Scholar
2 Dimitrakis, P., Normand, P. and Tsoukalas, D., “Silicon Nanocrystal Memories”, pp.211241 in “Silicon Nanopthonics”, ed. Khriachtchev, L., World Scientific Publishing, Singapore, 2008.Google Scholar
3 Dimitrakis, P. and Normand, P. D5.1, Mater. Res. Soc. Symp. Proc. 830, edClaverie, s. A. Tsoukalas, D., King, J. and Slaughter, J.M. Warrendale, PA, 2005 Google Scholar
4 Beyer, V. Borany, J. von, Ion-beam Synthesis of Nanocrystals for Multidot Memory Structures, in Materials for information Technology , eds. Zschech, E., Whelan, C., Mikolajick, T., Springer-Verlag London 2005 Google Scholar
5 Dimitrakis, P. Kapetanakis, E. Tsoukalas, D. Skarlatos, D. Bonafos, C. Asssayag, G. Ben, Claverie, A., Perego, M. Fanciulli, M. Soncini, V. Sotgiu, R. Agarwal, A. Ameen, M. Normand, P. Solid-State Electronics, 48, 15111517, (2004)10.1016/j.sse.2004.03.016Google Scholar
6 Dimitrakis, P. Kapetanakis, E. Normand, P. Skarlatos, D. Tsoukalas, D. Beltsios, K. Claverie, A., Benassayag, G. Bonafos, C. Chassaing, D. Soncini, V. Mater. Scien. Engineer. B 101, 1418 (2003)10.1016/S0921-5107(02)00688-8Google Scholar
7 Normand, P. Kapetanakis, E. Dimitrakis, P. Tsoukalas, D. Beltsios, K. Cherkashin, N. Bonafos, C., Benassayag, G. Coffin, H. Claverie, A. Soncini, V. Agarwal, A. Ameen, M. Appl. Phys. Lett., 83, 168170 (2003)10.1063/1.1588378Google Scholar
8 Bonafos, C. Coffin, H. Schamm, S. Cherkashin, N. Assayag, G. Ben, Dimitrakis, P. Normand, P., Carrada, M. Paillard, V. and Claverie, A. Solid-State Electronics, 49, 17341744 (2005)10.1016/j.sse.2005.10.001Google Scholar
9 Tsoukalas, D. Dimitrakis, P. Koliopoulou, S. and Normand, P. Mater. Scien. Engineer. B 124-125, 93101 (2005)10.1016/j.mseb.2005.08.105Google Scholar
10 Coffin, H. Bonafos, C. Schamm, S. Cherkashin, N. Assayag, G. Ben, Claverie, A. Respaud, M., Dimitrakis, P. and Normand, P. J. Appl. Phys. 99, 044302 (2006)10.1063/1.2171785Google Scholar
11 Card, H.C. and Elmasry, M.I., Solid-state Electronics 19, 863870 (1976)10.1016/0038-1101(76)90044-7Google Scholar