Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T06:16:42.099Z Has data issue: false hasContentIssue false

Annealing Effects of Microstructure in Thin-film Silicon Solar Cell Materials Measured by Effusion of Implanted Rare Gas Atoms

Published online by Cambridge University Press:  20 June 2011

W. Beyer
Affiliation:
Malibu GmbH & Co. KG, Böttcherstr. 7, D-33609 Bielefeld, Germany IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
D. Lennartz
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
P. Prunici
Affiliation:
Malibu GmbH & Co. KG, Böttcherstr. 7, D-33609 Bielefeld, Germany
H. Stiebig
Affiliation:
Malibu GmbH & Co. KG, Böttcherstr. 7, D-33609 Bielefeld, Germany
Get access

Abstract

In thin film silicon solar cell technology, annealing (heat treatment) effects are of interest since (i) annealing of underlying films often cannot be avoided during deposition and (ii) heat treatment (e.g. by laser) may be actively used for improvement of as-deposited material. Changes in the microstructure of several thin film silicon solar cell materials like hydrogenated amorphous silicon, microcrystalline silicon and zinc oxide by heat treatment were investigated by effusion measurements of hydrogen and implanted helium. Densification is observed for all materials studied, i.e. interconnected voids disappear or are transformed to isolated voids. We attribute the observed annealing effects primarily to an incomplete polymerization during growth. Important for solar cell processing is the result that the annealing effects involving structural changes set in at temperatures close to the temperature of deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohsawa, M., Hama, T., Akasaka, T., Ichimura, T., Sakai, H., Ishida, S., Uchida, Y., Jpn. J. Appl. Phys. 24, L838 (1985).10.1143/JJAP.24.L838Google Scholar
2. Rostan, P.J., Rau, U., Nguyen, V.X., Kirchartz, T., Schubert, M.B., Werner, H.J., Solar Energy Materials and Solar Cells 90, 1345 (2006).10.1016/j.solmat.2005.11.010Google Scholar
3. Beyer, W., Hamelmann, F., Knipp, D., Lennartz, D., Prunici, P., Raykov, A., Stiebig, H., Proceedings 25th EUPVSEC Conf., Valencia (2010) p. 3094.Google Scholar
4. Beyer, W., Wagner, H., J. Non-Cryst. Solids 59-60, 161 (1983).10.1016/0022-3093(83)90547-1Google Scholar
5. Beyer, W., in: Tetrahedrally-Bonded Amorphous Semiconductors, Adler, D., Fritzsche, H., eds. (Plenum, New York, 1985) p. 129.10.1007/978-1-4899-5361-2_11Google Scholar
6. Beyer, W., Einsele, F., in: Advanced Characterization Techniques for Thin Film Solar Cells, Abou-Ras, D., Kirchartz, T., Rau, U., eds. (Wiley-VCH, Weinheim, Germany, 2011) p. 449.10.1002/9783527636280.ch17Google Scholar
7. Beyer, W., Phys. Status Solidi C 1, 1144 (2004).10.1002/pssc.200304325Google Scholar
8. Van Wieringen, A., Warmoltz, N., Physica 22, 849 (1956).Google Scholar
9. Acco, S., Williamson, D.L., van Sark, W.G.J.H.M., Sinke, W.C., van der Weg, W.F., Polman, A., Roorda, S., Phys. Rev. B 58, 12853 (1998).10.1103/PhysRevB.58.12853Google Scholar
10. Beyer, W., Dekkers, H.F.W.. MRS Symp. Proc. 910, A0605 (2006).10.1557/PROC-0910-A06-05Google Scholar