Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T05:23:08.793Z Has data issue: false hasContentIssue false

Analysis of Si-SiO2 Interfacial-Energy Hierarchy via Mixed-Phase Solidification of Si Films on SiO2

Published online by Cambridge University Press:  07 October 2015

Ying Wang
Affiliation:
Dept. of Applied Physics and Applied Mathematics, Columbia University, NY, NY 10027, USA
Monica D. Chahal
Affiliation:
Dept. of Applied Physics and Applied Mathematics, Columbia University, NY, NY 10027, USA
J. J. Wang
Affiliation:
Dept. of Applied Physics and Applied Mathematics, Columbia University, NY, NY 10027, USA
A. B. Limanov
Affiliation:
Dept. of Applied Physics and Applied Mathematics, Columbia University, NY, NY 10027, USA
A. M. Chitu
Affiliation:
Dept. of Applied Physics and Applied Mathematics, Columbia University, NY, NY 10027, USA
James S. Im
Affiliation:
Dept. of Applied Physics and Applied Mathematics, Columbia University, NY, NY 10027, USA
Get access

Abstract

We have experimentally investigated the anisotropy of Si-SiO2 interfacial energy by leveraging the mixed-phase solidification (MPS) method. By examining the microstructure evolution resulting from partial-melting-and-solidification cycles, and interpreting the changes in the surface-orientation distribution of the grains in terms of the thermodynamic model, we have identified the orientation-dependent hierarchical order of Si-SiO2 interfacial energies, σ{hkl}, as: σ{100} < σ{310} < σ{113} < σ{112} < σ{221} < σ{210}∼σ{331} < σ{111}, σ{110}.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Helms, C. R. and Poindexter, E. H., Reports on Progress in Physics 57, 791852 (1994).CrossRefGoogle Scholar
Givargizov, E. I., Oriented Crystallization on Amorphous Substrates (Springer Science+ Business Media, New York, 1991).CrossRefGoogle Scholar
Atwater, H. A., Thompson, C. V. and Smith, H. I., J. Mater. Res. 3 (6), 12321237 (1988).CrossRefGoogle Scholar
Bosch, M. A. and Lemons, R. A., Phys. Rev. Lett. 47 (16), 11511155 (1981).CrossRefGoogle Scholar
Hawkins, W. G. and Biegelsen, D. K., Appl. Phys. Lett. 42 (4), 358360 (1983).CrossRefGoogle Scholar
Jackson, K. A. and Kurtze, D. A., J. Cryst. Growth 71 (2), 385390 (1985).CrossRefGoogle Scholar
Im, J. S., Chahal, M., Van der Wilt, P. C., Chung, U. J., Ganot, G. S., Chitu, A. M., Kobayashi, Naoyuki, Ohmori, K. and Limanov, A. B., J. Cryst. Growth 312 (19), 27752778 (2010).CrossRefGoogle Scholar
Chahal, M., van der Wilt, P. C., Gestel, D. V., Limanov, A. B., Chitu, A. M., Im, J. S., Mater. Res. Soc. Symp. Proc. 1426, 257262 (2012).CrossRefGoogle Scholar
Stolk, P. A., Polman, A., Sinke, W. C. a., Phys. Rev. B 47, 513 (1993).Google Scholar
Meissner, F., Zeitschrift für anorganische und allgemeine Chemie, 110 (1), 169186 (1920).CrossRefGoogle Scholar
Rie, E., Ph.D. dissertation, University of Vienna (1920).Google Scholar