Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T07:47:22.254Z Has data issue: false hasContentIssue false

Amplified Photochemistry with Slow Photons

Published online by Cambridge University Press:  26 February 2011

Jennifer I. L. Chen
Affiliation:
[email protected], University of Toronto, Chemistry, 80 St. George Street, Toronto, M5S3H6, Canada
Georg von Freymann
Affiliation:
[email protected], Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut für Nanotechnologie, Karlsruhe, 76021, Germany
Sung Yeun Choi
Affiliation:
[email protected], University of Toronto, Chemistry, 80 St. George Street, Toronto, M5S 3H6, Canada
Vladimir Kitaev
Affiliation:
[email protected], Wilfrid Laurier University, Chemistry, Waterloo, N2L 3C5, Canada
Geoffrey A. Ozin
Affiliation:
[email protected], University of Toronto, Chemistry, 80 St. George Street, Toronto, M5S 3H6, Canada
Get access

Abstract

We demonstrate monochromatic and white light optical amplification of the photo-oxidation of adsorbed methylene blue using an inverse colloidal photonic crystal fashioned from anatase nanocrystals, denoted i-nc-TiO2-o. Enhanced photo-activity that drives the oxidation of the dye is attributed to slow photons in i-nc-TiO2-o. When the slow photon wavelength is optimized with respect to the electronic excitation energy of i-nc-TiO2-o, the photo-oxidation rate of the dye is doubled compared to conventional nc-TiO2. By increasing the probability of absorbing photons in i-nc-TiO2-o relative to nc-TiO2, a larger population of electron-hole pairs is generated enabling more efficient photo-oxidation. Slow photons in photonic crystals portend a myriad of opportunities for amplified photo-processes in chemistry and biology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Linsebigler, A. L., Lu, G., Yates, J. T. Jr, Chem. Rev. 95, 735 (1995).Google Scholar
2. Fox, M. A., Dylay, M. T., Chem. Rev. 93, 341 (1993).Google Scholar
3. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Science 293, 269 (2001).Google Scholar
4. Choi, W., Termin, A., Hoffmann, M. R., J. Phys. Chem. 98, 13669 (1994).Google Scholar
5. Usami, A., Solar Energy Mater. Solar Cells 59, 163 (1999).Google Scholar
6. Imhof, A., Vos, W. L., Sprik, R., and Lagendijk, A., Phys. Rev. Lett. 83, 2942 (1999).Google Scholar
7. Chen, J. I. L., von Freymann, G., Choi, S. Y., Kitaev, V., and Ozin, G. A., Adv. Mater. 18, 1915 (2006).Google Scholar