Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T12:30:01.600Z Has data issue: false hasContentIssue false

AlN Nanorods synthesized by a Mechanothermal Process

Published online by Cambridge University Press:  25 March 2011

G. Rosas
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, C.U., Morelia, Mich. 58000, México
J. Chihuaque
Affiliation:
Instituto Tecnológico Superior de Irapuato, Apdo. Postal 179, Irapuato, Gto. 36021, México
C. Patiño-Carachure
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, C.U., Morelia, Mich. 58000, México
R. Esparza
Affiliation:
Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
R. Pérez
Affiliation:
Instituto de Ciencias Físicas, UNAM, P.O. Box 48-3, Cuernavaca, Mor. 62251, México
Get access

Abstract

Well-crystallized AlN nanorods have been produced by mechanical milling and subsequent annealing treatment of the milling powders (mechanothermal process). High purity AlN powders were used as the starting material. Mechanical milling was carried out in a vibratory SPEX mill for 30 h, using vials and balls of silicon nitride. The annealing treatment was carried out at 1200 ºC for 10 min. The characterization of the samples was performed by X-ray diffractometry and transmission electron microscopy (TEM). TEM observations indicated that the synthesized nanorods consisted of 30 nm in diameter and 100 nm in length. High resolution electron microscopy observations have been used in the structural characterization. AlN nanorods exhibit a well-crystallized structure. The growing direction of the nanorods is close to the [001] direction. The structural configurations have been explored through comparisons between experimental HREM images and theoretically simulated images obtained with the multislice method of the dynamical theory of electron diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhao, Q., Feng, S., Zhu, Y., Xu, X., Zhang, X., Song, X., Xu, J., Chen, L., Yu, D., Nanotechnology 17, S351S354 (2006).Google Scholar
2. Taniyasu, Y., Kasu, M., Makimoto, T., Nature 441, 325328 (2006).Google Scholar
3. Zhang, Y., Liu, J., He, R., Zhang, Q., Zhang, X., Zhu, J., Chem. Mater. 13, 38993905 (2001).Google Scholar
4. Yang, J., Liu, T.W., Hsu, C.W., Chen, L.C., Chen, K.H., Chen, C.C., Nanotechnology 17, S321S326 (2006).Google Scholar
5. He, J.H., Yang, R., Chueh, Y.L., Chou, L.J., Chen, L.J., Wang, Z.L., Adv. Mater. 18, 650654 (2006).Google Scholar
6. Lei, W., Liu, D., Zhu, P., Wang, Q., Liang, G., Hao, J., Chen, X., Cui, Q., Zou, G., J. Phys. Chem. C 112, 1335313358 (2008).Google Scholar
7. Liu, C., Hu, Z., Wu, Q., Wang, X.Z., Chen, Y., Sang, H., Zhu, J.M., Deng, S.Z., Xu, N.S., J. Am. Chem. Soc. 127, 13181322 (2005).Google Scholar
8. Tang, Yong-Bing, Tang, Dai-Ming, Liu, Chang, Cong, Hong-Tao and Cheng, Hui-Ming, “Nanoscale Phenomena”, Vol. 2 of LECTURE NOTES IN NANOSCALE SCIENCE AND TECHNOLOGY ed. Tang, Z. and Sheng, P., (Springer NY, 2008).Google Scholar
9. Tang, Y.B., Cong, H.T., Zhao, Z.G., Cheng, H.M., Appl. Phys. Lett. 86, 153104 (2005).Google Scholar
10. Wu, Q., Hu, Z., Wang, X., Chen, Y., J. Phys. Chem. B 107, 97269729 (2003).Google Scholar
11. Smet, P.F., Van Haecke, J.E., Poelman, D., Solid State Communications 139, 522526 (2006).Google Scholar
12. Lei, M., Song, B., Guo, X., Guo, Y.F., Li, P.G., Tang, W.H., Journal of the European Ceramic Society 29, 195200 (2009).Google Scholar
13. Shen, L., Cheng, T., Wu, L., Li, X., Cui, Q., Journal of Alloys and Compounds 465, 562566 (2008).Google Scholar
14. Kim, T.Y., Lee, S.H., Mo, Y.H., Shim, H.W., Nahm, K.S., Suh, E.K., Yang, J.W., Lim, K.Y., Park, G.S., Journal of Crystal Growth 257, 97103 (2003).Google Scholar
15. Beltran, L., Gomez, A., SimulaTEM® Software 1999.Google Scholar
16. Delley, B., J.Chem. Phys. 92, 508517 (1990).Google Scholar