Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T18:00:16.569Z Has data issue: false hasContentIssue false

Aligned-Crystalline Si Films on Glass

Published online by Cambridge University Press:  01 February 2011

Alp T. Findikoglu
Affiliation:
[email protected], Los Alamos National Laboratory, MPA-STC, MS T004, Los Alamos, NM, 87544, United States
Ozan Ugurlu
Affiliation:
[email protected], Los Alamos National Laboratory, MPA-STC, MS K763, Los Alamos, NM, 87544, United States
Terry G. Holesinger
Affiliation:
[email protected], Los Alamos National Laboratory, MPA-STC, MS K763, Los Alamos, NM, 87544, United States
Get access

Abstract

We report structural and electronic properties of Aligned-Crystalline Si (ACSi) films on glass substrates. These films show enhanced majority carrier mobilities and minority carrier lifetimes with increasing crystallinity, i.e., with improving alignment and connectivity of the grains. A 0.4-μm-thick ACSi film with a total grain mosaic spread of 4.2° showed Hall mobility of 47 cm2/V.s for a p-type doping concentration of 1.9×1018 cm−3. A prototype n+/p/p+–type diode fabricated using a 4.2-μm-thick ACSi film showed minority carrier lifetime of ∼3.5 μs and estimated diffusion length of ∼30 μm in the p layer with a doping concentration of 5×1016 cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arendt, P. N. Foltyn, S. R. Mater. Res. Soc. Bull. 29, 543 (2004).Google Scholar
2. Iijima, Y., Kakimoto, K., Sutoh, Y., Ajimura, S., Saitoh, T., Supercond. Sci. Tech. 17, 264 (2004).Google Scholar
3. Wang, C. P. Do, K. B. Beasley, M. R. Geballe, T. H. Hammond, R. H. Appl. Phys. Lett. 71, 2955 (1997).Google Scholar
4. Findikoglu, A. T. Kreiskott, S., Riele, P. M. te, and Matias, V., J. Mater. Res. 19, 501 (2004).Google Scholar
5. Dong, L., Srolovitz, D. J. Was, G. S. Zhao, Q., and Rollett, A. D. J. Mater. Res. 16, 210 (2001).Google Scholar
6. Dong, L. Zepeta-Ruiz, L. A., Srolovitz, D. J. J. Appl. Phys. 89, 4105 (2001).Google Scholar
7. Findikoglu, A. T. Choi, W. Matias, V. Holesinger, T. G. Jia, Q. X. Peterson, D. E. Adv. Mater. 17, 1527 (2005).Google Scholar
8. Choi, W. Lee, J. K. Findikoglu, A. T. Appl. Phys. Lett. 89, 262111 (2006).Google Scholar
9. Findikoglu, A. T. Choi, W. Hawley, M. Romero, M. J. Jones, K. M. Al-Jassim, M. M., in Progress in Advanced Materials Research (Ed: Voler, N. H. Nova Science Publishers, Hauppauge, New York, 2007), Ch. 6.Google Scholar
10. Yamamoto, K. IEEE Trans. Electron Dev. 46, 2041 (1999).Google Scholar
11. Aberle, A. G. Widenborg, P. I. Song, D. Straub, A. Terry, M. L. Walsh, T. Sproul, A. Campbell, P. Inns, D. Beilby, B. Griffin, M. Weber, J. Huang, Y. Kunz, O. Gebs, R. Martin-Brune, F., Barroux, V. Wenham, S. H. Recent Advances in Polycrystalline Silicon Thin-Film Solar Cells on Glass at UNSW., presented at Thirty-First IEEE Photovoltaic Specialists Conference (Lake Buena Vista, FL, USA, 2005).Google Scholar
12. Werner, J. H. Dassow, R. Rinke, T. J. Kohler, J. R. Bergmann, R. B. Thin Sol. Films 383, 95 (2001).Google Scholar
13. Teplin, C. W. Ginley, D. S. Branz, H. M. J. Non-Cryst. Solids 352, 984 (2006).Google Scholar
14. Kimura, T. Sengoku, A. Ishida, M. Jpn. J. Appl. Phys. 35, 1001 (1996).Google Scholar
15. Lin, J. F. Li, S. S. Linares, L. C. Teng, K. W. Solid State Electron. 24, 827 (1981).Google Scholar
16. Sze, S. M. Physics of Semiconductor Devices (Wiley-Interscience, New York, 1981).Google Scholar
17. Toshiharu, S. J. Appl. Phys. 99, 11 (2006).Google Scholar
18. Haji, L. Joubert, P. Stoemenos, J. Economou, N. A. J. Appl. Phys. 75, 3944 (1994).Google Scholar
19. Bergmann, R. B. Kohler, J. Dassow, R. Zaczek, C. Werner, J. H. Physica Status Solidi A166, 587 (1998).Google Scholar
20. Im, J. S. Sposili, R. S. Crowder, M. A. Appl. Phys. Lett. 70, 3434 (1997).Google Scholar
21. Tai, M. Hatano, M. Yamaguchi, S. Noda, T. Park, S. K. Shiba, T. Ohkura, M. IEEE Trans. Electron. Devices 51, 934 (2004).Google Scholar