Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T03:01:53.177Z Has data issue: false hasContentIssue false

Advanced Nanocomposite Polymer Films for Bimorphic Gas Sensors

Published online by Cambridge University Press:  21 March 2011

G. Gerlach
Affiliation:
Dresden University of Technology, Institute for Solid State Electronics, 01062 Dresden, Germany
M. Guenther
Affiliation:
Dresden University of Technology, Institute for Solid State Electronics, 01062 Dresden, Germany
G. Suchaneck
Affiliation:
Dresden University of Technology, Institute for Solid State Electronics, 01062 Dresden, Germany
K. Sahre
Affiliation:
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
K.-J. Eichhorn
Affiliation:
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
A. Deineka
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praque 8, Czech Republic
L. Jastrabik
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praque 8, Czech Republic
Get access

Abstract

Thin films of aromatic polymers such as polyimide (PI) and polyethersulfone (PES) find an extensive use in aerospace and electronic applications, in particular, as sensitive to moisture and gas uptake layers for bimorphic sensors. In this work, a complex investigation of the film composition, microstructure and physical properties of ion beam modified polymer films was carried out to optimize the moisture uptake. To modify thin films of polyimide and polyethersulfone 50, 130 and 180 keV boron ions with irradiation doses between 1013 and 1016 B+/cm2 were implanted. It could be shown, that partly destruction of chemical bonding under ion bombardment leads to the creation of new amorphous and graphite-like structures, which increase the modified surface film conductivity by several orders of magnitude and enhances the sensitivity of these nanocomposite films to moisture uptake.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sager, K., Gerlach, G., and Schroth, A., German patent DE 43 12 788 (1994).Google Scholar
2. Gerlach, G., and Sager, K., Sens. Actuat. A, 43, 181 (1994).Google Scholar
3. Buchhold, R., Bimorphe Gassensoren, Dresden Univ. Press, Dresden, and Munich (1999).Google Scholar
4. Buchhold, R., Nakladal, A., Gerlach, G., Sahre, K., Müller, M., Eichhorn, K.-J., Herold, M., and Gauglitz, G., J. Electrochem. Soc., 145, 4012 (1998).Google Scholar
5. Buchhold, R., Nakladal, A., Gerlach, G., Sahre, K., Eichhorn, K.-J., and Dlubek, G., In: Transducers '99, Digest Techn. Papers, vol. 1, IEEJ, Sendai, 230, (1999).Google Scholar
6. Gerlach, G., Baumann, K., Buchhold, R., and Nakladal, A., German patent DE 198 53 732 (1998).Google Scholar
7. Ziegler, J. F., Biersack, J. P., and Littmark, U.: The Stopping and Range of Ions in Solids, Pergamon Press, New York (1996); F. F. Ziegler: The Stopping and Range of Ions in Solids, vol. 2 – 6, Pergamon Press, New York (1977-1985); and J. P. Biersack, and L. Haggmark, Nucl. Instr. and Meth., 174, 257 (1980). See also: http://www.research.ibm.com/ionbeams/SRIM/SRIMINTR.htm.Google Scholar
8. Smith, B., Infrared Spectral Interpretation: a Systematic Approach, CRC Press, Boca Rota (1999).Google Scholar
9.Standard IEC 93: Methods of test for insulating materials for electrical purposes; Volume resistivity and surface resistivity of solid electrical insulating materials (1980).Google Scholar
10. Lee, E.H., In: Ghosh, M., and Mittal, K. (eds.), Polyimides, Marcel Dekker, New York, 471(1996).Google Scholar
11. Lee, E. H., Lewis, M. B., Blau, P. J., and Mansur, L. K., J. Mater. Res., 6, 610 (1991).Google Scholar
12. Xu, D., Xu, X. L., Du, G. D., Wang, R., and Zou, S. C., Nucl. Instr. and Meth. B, 80/81, 1063 (1993).Google Scholar
13. Xu, D., Xu, X., and Zou, S., Appl. Phys. Lett., 59, 3110 (1991).Google Scholar
14. Venkatesan, T., Forrest, S. R., Kaplan, M. L., Murray, C. A., Schmidt, P.H., and Wilkens, B. J., J.Appl. Phys., 54, 3150 (1983).Google Scholar
15. Wasserman, B., Phys. Rev. B, 34, 1926 (1986).Google Scholar
16. Marletta, G., Oliveri, C., Ferla, G., and Pignatoro, S., Surface and Interface Analysis, 12, 447 (1988).Google Scholar
17. Wang, Y., Monite, S. S. and Bridwel, L. B., J. Mater. Res., 8, 388 (1993).Google Scholar
18. Kast, W.: Adsorption aus der Gasphase, VCH, Weinheim (1988).Google Scholar