Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:12:09.039Z Has data issue: false hasContentIssue false

Active Field Effect Capacitive Sensors for High-throughput, Label-free Nucleic Acid Analysis

Published online by Cambridge University Press:  01 February 2011

Manu Sebastian Mannoor
Affiliation:
[email protected]@gmail.com, NJIT, Microelectronics Research Center, Newark, New Jersey, United States
Teena James
Affiliation:
[email protected], NJIT, Microelectronics Research Center, Newark, New Jersey, United States
Dentcho V. Ivanov
Affiliation:
[email protected], NJIT, Microelectronics Research Center, Newark, New Jersey, United States
Bill Braunlin
Affiliation:
[email protected], Rational Affinity Devices LLC, Newark, New Jersey, United States
Les Beadling
Affiliation:
[email protected], Rational Affinity Devices LLC, Newark, New Jersey, United States
Get access

Abstract

We report a highly selective technique for the rapid and label-free analysis of nucleic acid sample using Metal Oxide Semiconductor (MOS) capacitive sensors. The binding of charged macromolecules such as DNA on the surface of these Field Effect Devices modifies the charge distribution in the Semiconductor (Si) region of the sensor. These changes are manifested as a significant shift in the Capacitance-Voltage (C-V) characteristics measured across the device. The speed and selectivity of the detection process is enhanced by the use of external electric field of controlled intensity. This simple and high-throughput sensing technique holds promises for the future electronic DNA arrays and Lab-on-a chip devices

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pejcic, B., Marco, R. D. and Parkinson, G., Analyst 131 (10), 10791090 (2006).Google Scholar
2. Souteyrand, E., Cloarec, J. P., Martin, J. R., Wilson, C., Lawrence, I., Mikkelsen, S. and Lawrence, M. F., Journal of Physical Chemistry B 101 (15), 29802985 (1997).Google Scholar
3. Edman, C. F., Raymond, D. E., Wu, D. J., Tu, E., Sosnowski, R. G., Butler, W. F., Nerenberg, M. and Heller, M. J., Nucleic Acids Research 25 (24), 49074914 (1997).Google Scholar
4. Gurtner, C., Tu, E., Jamshidi, N., Haigis, R. W., Onofrey, T. J., Edman, C. F., Sosnowski, R., Wallace, B. and Heller, M. J., Electrophoresis 23 (10), 15431550 (2002).Google Scholar
5. Heller, M. J., Forster, A. H. and Tu, E., Electrophoresis 21 (1), 157164 (2000).Google Scholar
6. Fixe, F., Branz, H. M., Louro, N., Chu, V., Prazeres, D. M. F. and Conde, J. P., Nanotechnology 16 (10), 20612071 (2005).Google Scholar
7. Nuzzo, R. G. and Allara, D. L., Journal of the American Chemical Society 105 (13), 44814483 (1983).Google Scholar
8. Wink, T., Van Zuilen, S. J., Bult, A. and Van Bennekom, W. P., Analyst 122 (4), 43R50R (1997).Google Scholar
9. Nicollian, E. H. and Brews, J. R., MOS Physics and Technology Wiley, New York (2007).Google Scholar