Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T03:25:43.242Z Has data issue: false hasContentIssue false

Achieving Superplasticity and Superplastic Forming through Severe Plastic Deformation

Published online by Cambridge University Press:  14 March 2011

Minoru Furukawa
Affiliation:
Department of Technology, Fukuoka University of Education, Munakata, Fukuoka 811-4192, Japan
Zenji Horita
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812-8581, Japan
Terence G. Langdon
Affiliation:
Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453, U.S.A
Get access

Abstract

The application of severe plastic deformation to metals provides a convenient procedure for achieving nanometer and submicrometer microstructures. Several different processing methods are available but Equal-Channel Angular Pressing (ECAP) is especially attractive because it provides an opportunity for preparing relatively large bulk samples. This paper describes the use of ECAP in preparing materials with ultrafine grain sizes and the subsequent properties of these materials at elevated temperatures. It is demonstrated that, provided precipitates are present to retain these small grain sizes at the high temperatures where diffusion is reasonably rapid, it is possible to achieve remarkably high superplastic elongations in the as-pressed materials and there is a potential for making use of this processing procedure to develop a superplastic forming capability at very rapid strain rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Langdon, T.G., Metall. Trans., 13A, 689 (1982).Google Scholar
2. Langdon, T.G., Mater. Sci. Engng, A174, 225 (1994).Google Scholar
3. Barnes, A.J., Mater. Sci. Forum, 304–306, 785 (1999).Google Scholar
4. Barnes, A.J., Mater. Res. Soc. Symp. Proc., 601, 207 (2000).Google Scholar
5. Ball, A. and Hutchison, M.M., Metal Sci. J., 3, 1 (1969).Google Scholar
6. Langdon, T.G., Acta Metall. Mater., 42, 2437 (1994).Google Scholar
7. Ma, Y., Furukawa, M., Horita, Z., Nemoto, M., Valiev, R.Z. and Langdon, T.G., Mater. Trans. JIM, 37, 336 (1996).Google Scholar
8. Mohamed, F.A., Ahmed, M.M.I. and Langdon, T.G., Metall. Trans., 8A, 933 (1977).Google Scholar
9. Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V., Prog. Mater. Sci., 45, 103 (2000).Google Scholar
10. Lowe, T.C. and Valiev, R.Z., JOM, 52 (4), 27 (2000).Google Scholar
11. Lowe, T.C. and Valiev, R.Z. (eds), Investigations and Applications of Severe Plastic Deformation, Kluwer, Dordrecht, The Netherlands (2000).Google Scholar
12. Smirnova, N.A., Levit, V.I., Pilyugin, V.I., Kuznetsov, R.I., Davydova, L.S. and Sazonova, V.A., Fiz. Met. Metalloved., 61, 1170 (1986).Google Scholar
13. Segal, V.M., Reznikov, V.I., Drobyshevskiy, A.E. and Kopylov, V.I., Russian Metall., 1, 99 (1981).Google Scholar
14. Segal, V.M., Mater. Sci. Engng, A197, 157 (1995).Google Scholar
15. Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M. and Langdon, T.G., Scripta Mater., 35, 143 (1996).Google Scholar
16. Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Mater. Sci. Engng, A257, 328 (1998).Google Scholar
17. Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Acta Mater., 45, 4733 (1997).Google Scholar
18. Ferrasse, S., Segal, V.M., Hartwig, K.T. and Goforth, R.E., Metall. Mater. Trans., 28A, 1047 (1997).Google Scholar
19. Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Acta Mater., 46, 3317 (1998).Google Scholar
20. Gholinia, A., Prangnell, P.B. and Markushev, M.V., Acta Mater., 48, 1115 (2000).Google Scholar
21. Oh-ishi, K., Horita, Z., Furukawa, M., Nemoto, M. and Langdon, T.G., Metall. Mater. Trans., 29A, 2011 (1998).Google Scholar
22. Zhu, Y.T. and Lowe, T.C., Mater. Sci. Engng, A291, 46 (2000).Google Scholar
23. Nakashima, K., Horita, Z., Nemoto, M. and Langdon, T.G., Acta Mater., 46, 1589 (1998).Google Scholar
24. Hasegawa, H., Komura, S., Utsunomiya, A., Horita, Z., Furukawa, M., Nemoto, M. and Langdon, T.G., Mater. Sci. Engng, A265, 188 (1999).Google Scholar
25. Berbon, P.B., Komura, S., Utsunomiya, A., Horita, Z., Furukawa, M., Nemoto, M. and Langdon, T.G., Mater. Trans. JIM, 40, 772 (1999).Google Scholar
26. Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z. and Langdon, T.G., Acta Mater., 45, 4751 (1997).Google Scholar
27. Lee, S., Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z. and Langdon, T.G., Mater. Sci. Engng, A272, 63 (1999).Google Scholar
28. Komura, S., Horita, Z., Furukawa, M., Nemoto, M. and Langdon, T.G., Metall. Mater. Trans., in press.Google Scholar
29. Horita, Z., Furukawa, M., Nemoto, M., Barnes, A.J. and Langdon, T.G., Acta Mater., 48, 3633 (2000).Google Scholar
30. Akamatsu, H., Fujinami, T., Horita, Z. and Langdon, T.G., Scripta Mater.. in press.Google Scholar