Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T23:04:27.199Z Has data issue: false hasContentIssue false

Ab initio determination of the elastic properties of cubic Ge1Sb2Te4

Published online by Cambridge University Press:  07 June 2012

K. Kohary
Affiliation:
College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter, EX4 4QF, United Kingdom
A. S. H. Marmier
Affiliation:
College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter, EX4 4QF, United Kingdom
C. D. Wright
Affiliation:
College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter, EX4 4QF, United Kingdom
Get access

Abstract

The elastic properties of chalcogenide materials used for phase change applications in rewritable optical media (such as CD-RW, DVD-RW, etc) are still poorly characterized and the previously published experimental and theoretical values show large discrepancies. In this manuscript, we review these results and carry out a careful analysis of the elastic properties of a model system, crystalline Ge1Sb2Te4, using density functional theory and elastic anisotropy considerations. We show that Ge1Sb2Te4 exhibits significant anisotropy in its elastic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Raoux, S. and Wuttig, M., Phase Change Materials (Springer, 2008).Google Scholar
2. Yamada, N. and Matsunaga, T., J. Appl. Phys. 88, 7020 (2000).Google Scholar
3. Caravati, S., Bernasconi, M., Kuhne, T. D., et al. ., Phys. Rev. Lett. 102, 205502 (2009).Google Scholar
4. Pedersen, T. P. L., Kalb, J., Njoroge, W. K., et al. ., Appl. Phys. Lett. 79, 3597 (2001).Google Scholar
5. Kalb, J., Spaepen, F., Pedersen, T. P. L., et al. ., J. Appl. Phys. 94, 4908 (2003).Google Scholar
6. Park, I. M., Jung, J. K., Ryu, S. O., et al. ., Thin Solid Films 517, 848 (2008).Google Scholar
7. Jong, C. A., Fang, W. L., Lee, C. M., et al. ., Jpn. J. Appl. Phys. 40, 3320 (2001).Google Scholar
8. Krbal, M., Kolobov, A. V., Haines, J., et al. ., Appl. Phys. Lett. 93, 031918 (2008).Google Scholar
9. Kolobov, A. V., Haines, J., Pradel, A., et al. ., Phys. Rev. Lett. 97, 035701 (2006).Google Scholar
10. Blachowicz, T., Beghi, M. G., Guntherodt, G., et al. ., J. Appl. Phys. 102, 093519 (2007).Google Scholar
11. Zhou, J., Sun, Z. M., Xu, L. H., et al. ., Solid State Commun. 148, 113 (2008).Google Scholar
12. Gonze, X., Rignanese, G. M., Verstraete, M., et al. ., Z. Kristallogr. 220, 558 (2005).Google Scholar
13. Gonze, X., Amadon, B., Anglade, P. M., et al. ., Comput. Phys. Commun. 180, 2582 (2009).Google Scholar
14. Matsunaga, T. and Yamada, N., Jpn. J. Appl. Phys. Part 1 43, 4704 (2004).Google Scholar
15. Zener, C., Elasticity and Anelasticty of Metals (University of Chicago Press Chicago, 1948).Google Scholar
16. Ledbetter, H. and Migliori, A., J. Appl. Phys. 100, 063516 (2006).Google Scholar
17. Ranganathan, S. I. and Ostoja-Starzewski, M., Phys. Rev. Lett. 101, (2008).Google Scholar
18. Marmier, A. et al. ., Comput. Phys. Commun. 181, 2102 (2010).Google Scholar
19. Marmier, A., Kohary, K., Wright, C. D., Appl. Phys. Lett. 98, 231911 (2011).Google Scholar