Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T04:26:09.313Z Has data issue: false hasContentIssue false

Ab Initio Calculations of Structural Energetics of Transition-Metal Aluminides and Silicides

Published online by Cambridge University Press:  26 February 2011

A. E. Carlsson
Affiliation:
Department of Physics, Washington University, St. Louis, MO 63130
P. J. Meschter
Affiliation:
McDonnell Douglas Research Labs, P. O. Box 516, St. Louis, MO 63166
Get access

Abstract

Total energies of binary and ternary -metral trialminides in the L12DO22 Do23Structures and binary Transition- metal disilicides in the C1lb, C40, C54, and C49 structures have been obtained by ab initio band-structure calculations. In aluminides the tetragonal Do22 and Do23 structures are stabilized relative to cubic L12P and in silicides the hexagonal C40 structure is stabilized relative to orthorhombic C54 and tetragonal C11b relative to C40, as the transition-metal d-electron count increases. The observed easier stabilization of L12 in Ti(AI,Fe) 3 relative to Nb(AI,Fe)is justified by the calculations. Location of the Fermi level in a quasigap in the density of states distribution rationalizes the observed structural stabilities in aluminides but not in silicides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williams, A. R., Kubler, J. R., and Gelatt, C. D., Phys. Rev. B19, 6094 (1979).CrossRefGoogle Scholar
2. Methfessel, M. and Kubler, J. R., J. Phys. F12, 141 (1982).Google Scholar
3. Carlsson, A. E. and Meschter, P. J., J. Maters. Res. 4, 1060 (1989).CrossRefGoogle Scholar
4. Xu, J.-H. and Freeman, A. J., Phys. Rev. B40, 11927 (1989).CrossRefGoogle Scholar
5. Nicholson, D. M., Stocks, O. M., Temmerman, W. M., Sterne, P., and Pettifor, D. G., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Materials Research Society, Pittsburgh, 1989), p. 17.Google Scholar
6. Carlsson, A. E. and Meschter, P. J., J. Maters. Res. 5 (in press).Google Scholar
7. Mazdiyasni, S., Miracle, D. B., and Dimiduk, D. M., Scripta Metall. 23, 327 (1989).Google Scholar
8. Porter, W. D., Hisatsune, K., Sparks, C. J., Oliver, W. C., and Dhere, A., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Materials Research Society, Pittsburgh, PA, 1989), p. 657.Google Scholar
9. Villars, P. and Calvert, L. D., Pearson's Hlandbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1986).Google Scholar
10. Pearson, W. B., The Crystal Chemistry and Physics of Metals and Alloys (John Wiley and Sons, New York, 1972)Google Scholar