Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T18:45:44.352Z Has data issue: false hasContentIssue false

1/f Noise in Length Sorted Single-walled Carbon Nanotubes at Their Critical Percolation Conditions

Published online by Cambridge University Press:  22 February 2012

Daneesh O. Simien
Affiliation:
Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, U.S.A.
Clayton E. Simien
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV, 26506-6315
Kristen Felice
Affiliation:
WVNano, West Virginia University, Morgantown, WV 26506-6106, U.S.A.
Get access

Abstract

The electrical noise characteristics of thin film random networks of single walled carbon nanotubes with lengths of 820nm, 210nm and 130nm, were evaluated in addition to mixed length and pure semiconducting single-walled carbon nanotube networks. This study represents one of the first experimental studies in which highly characterized length sorted single walled nanotubes networks have been investigated to isolate their contributions to 1/f noise. In this work we evaluate the noise power spectrum, in the low frequency range, for each of our type sorted samples and demonstrate the effect of nanotube type, length, dimensionality and critical percolation conditions in 1/f noise generating mechanisms. 1/f noise in two-dimensional (2-D) thin films of random network, homogeneous length sorted SWNTs at their percolation threshold in contrast to three dimensional (3-D) thin films of mixed length SWNT and purely semi-conducting SWNT thin films were investigated. We find that at their respective critical percolation thresholds, xc, length sorted SWNT networks exhibit atypical reduced noise amplitude (A) characteristics compared to their mixed length and semi-conducting nanotube counterparts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, C.C. and Chou, Y.C., Phys. Rev. Lett. 54(23), 25292532, (1985).Google Scholar
2. Dutta, P. and Horn, P.M., Rev. Mod. Phys. 53, 497516, (1981).Google Scholar
3. Collins, P.G, Fuhrer, M.S., and Zettl, A., Appl. Phys. Lett. 76, 894896, (2000).Google Scholar
4. Hooge, F.N., Kleinpenning, T.G. M. and Vandamme, L.K.J., Rep. Prog. Phys. 44, 479532, (1981).Google Scholar
5. Fleetwood, D. M. and Giordano, N., Phys. Rev. B 31, 11571160, (1985).Google Scholar
6. Scofield, J. H., Darling, D. H., and Webb, W. W., Phys. Rev. B 24, 74507453, (1981).Google Scholar
7. Fagan, J. A., Becker, M. L., Chun, J., Hobbie, E. K., Adv. Mat. 20, 16091613, (2008).Google Scholar
8. Rinzler, A. G., Liu, J., Nikolaev, P., Huffman, C. B., Rodriguez-Macias, F. J., Boul, P. J., Lu, A. J., Heymann, D., Colbert, D. T., Lee, R. S., et al. . Appl. Phys. A: Mater. Sci. Process., 67, 2937, (1998).Google Scholar
9. Simien, D., Fagan, J., Luo, W., Douglas, J., Migler, K. and Obrzut, J., ACS Nano 2 (9), 18791884, (2008).Google Scholar
10. Stroud, D., Phys Rev. B 12, 3368, (1975).Google Scholar
11. Bruggeman, D.A.G., Ann Phys. 24, 636, (1935)Google Scholar
12. Clerc, J. P., Giraud, G., Laugier, J. M., Luck, J. M., Advances in Physics, 39, (3), 191309, (1990).Google Scholar
13. Frank, D. J., Lobb, C. J., Phys. Rev. B 37, 302307, (1988).Google Scholar
14. Laugier, J. M., Clerc, J. P., Giraud, G., Luck, J. M., J. Phys. A, 19, 31533164, (1986).Google Scholar
15. Stauffer, D., Introduction to Percolation Theory, (Tayler & Francis Ltd., London and Philadelphia, 1985).Google Scholar
16. Snow, E.S, Perkins, F. K., Houser, E.J., Badescu, S.C, and Reinecke, T.L, Science 307, 19421945, (2005).Google Scholar
17. Snow, E.S., Novak, J.P., Lay, M.D. and Perkins, F.K., Appl. Phys. Lett. 85(18), 41724174, (2004).Google Scholar
18. Soliveres, S., Gyani, J., Delseny, C., Hoffmann, A and Pascal, F., Appl. Phys Lett. 90, 082107–3, (2007).Google Scholar
19. Behnam, A., Bosman, G., and Ural, A., Phy. Rev B. 78, 085431–9, (2008).Google Scholar
20. Rouhi, N., Jain, D., Zand, K. and Burke, P.J., Advanced. Mat., 23(1) 9499, (2011).Google Scholar