Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T00:25:06.362Z Has data issue: false hasContentIssue false

1.5 micron InAs quantum dot lasers based on metamorphic InGaAs/GaAs heterostructures.

Published online by Cambridge University Press:  01 February 2011

V.M. Ustinov
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
A.E. Zhukov
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
A.R. Kovsh
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
N.A. Maleev
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
S.S. Mikhrin
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
A.P. Vasil'ev
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
E.V. Nikitina
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
E.S. Semenova
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
N.V. Kryzhanovskaya
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
Yu.G. Musikhin
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
Yu.M. Shernyakov
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
M.V. Maximov
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
N.N. Ledentsov
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, PN5–2, Hardenbergst. 36, D-10623 Berlin, Germany
D. Bimberg
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, PN5–2, Hardenbergst. 36, D-10623 Berlin, Germany
Zh.I. Alferov
Affiliation:
Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
Get access

Abstract

1.5 micron range emission has been realized using the InAs quantum dots embedded into the metamorphic InGaAs layer containing 20% of InAs grown by MBE on a GaAs substrate. Growth regimes were optimized to reduce significantly the density of dislocations propagating into the active layer from the lattice mismatched interface. 2 mm long InGaAs/InGaAlAs lasers with 10 planes of quantum dots in the active region showed threshold current density about 1.4 kA/cm2 with the external differential efficiency as high as 38%. Lasing wavelength depends on the optical loss being in the 1.44–1.49 micron range at room temperature. On increasing the temperature the wavelength reaches 1.515 micron at 85C while the threshold current characteristic temperature of 55–60K was estimated. High internal quantum efficiency (η>60%)and low internal losses (α=3–4 cm ) were realized. Maximum room temperature output power in pulsed regime as high as 5.5 W for 100 micron wide stripe was demonstrated. Using the same concept 1.3 micron InGaAs/InGaAlAs quantum well lasers were fabricated. The active region contained quantum wells with high (∼40%) indium content which was possible due to the intermediate InGaAs strain relaxation layer. 1 mm stripe lasers showed room temperature threshold current densities about 3.3 kA/cm (λ=1.29 micron) and 400 A/cm2 at 85K. Thus, the use of metamorphic InGaAs layers on GaAs substrate is a very promising approach for increasing the emission wavelength of GaAs based lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ustinov, V.M. and Zhukov, A.E., Semicond. Sci. Technol. 15, R41 (2000).Google Scholar
2. Ustinov, V.M., Zhukov, A.E., Egorov, A.Yu. and Maleev, N.A., “Quantum Dot Lasers”, Oxford University Press, 2003 Google Scholar
3. Gollub, D., Fisher, M., and Forchel, A., Electron. Lett., 38, 1183 (2002).Google Scholar
4. Li, L.H., Sallet, V., Patriarche, G., Largeau, L., Bouchoule, S., Merhem, K., Travers, L., and Harmand, J.C., Electron. Lett., 39, 519 (2003).Google Scholar
5. Zhukov, A.E., Kovsh, A.R., Mikhrin, S.S., Semenova, E.S., Maleev, N.A., Vasil'ev, A.P., Nikitina, E.V., Kryzhanovskaya, N.V., Gladyshev, A.G., Shernyakov, Yu.M., Musikhin, Yu.G., Maximov, M.V., Ledentsov, N.N., Ustinov, V.M., and Alferov, Zh.I., Fiz. I Tekhn. Poluprovodn. (Semiconductors), 37, 1143 (2003).Google Scholar
6. Cordier, Y. and Ferre, D., J. Cryst. Growth, 201–202, 263 (1999).Google Scholar
7. Ustinov, V.M., Zhukov, A.E., Egorov, A.Yu., Kovsh, A.R., Zaitsev, S.V., Gordeev, N.Yu., Kopchatov, V.I., Ledentsov, N.N., Tsatsul'nikov, A.F., Volovik, B.V., Kop'ev, P.S., Alferov, Zh.I., Ruvimov, S.S., Liliental-Weber, Z., and Bimberg, D., Electron. Lett., 34, 670 (1998).Google Scholar
8. Odnoblyudov, V.A., Egorov, A.Yu., Kovsh, A.R., Zhukov, A.E., Gladyshev, A.G., Kryzhanovskaya, N.V., Maximov, M.V., Ustinov, V.M., Ledentsov, N.N., Fiz. I Tekhn. Poluprovodn. (Semiconductors), to be publishedGoogle Scholar
9. Ledentsov, N.N., Kovsh, A.R., Zhukov, A.E., Maleev, N.A., Mikhrin, S.S., Vasil'ev, A.P., Semenova, E.S., Maximov, M.V., Shernyakov, Yu.M., Kryzhanovskaya, N.V., Ustinov, V.M., Bimberg, D., Electron. Lett., 39, 1126 (2003).Google Scholar