Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T18:28:37.107Z Has data issue: false hasContentIssue false

Abrikosov-like lattices in organic crystals on graphite surface

Published online by Cambridge University Press:  09 April 2014

Alexandre F. Fonseca
Affiliation:
Applied Physics Department, State University of Campinas, Campinas, Sao Paulo, 13083-859 Brazil.
Paulo N. Lisboa-Filho
Affiliation:
Advanced Materials Group, UNESP - Univ Estadual Paulista, Bauru, São Paulo, 17033-360, Brazil.
Get access

Abstract

The interest for surface patterning presents a fast increasing in the last few years due to several factors ranging from miniaturization trends and sensor design to worries about the absorption of carcinogenic molecules on inhalable particles. Although the existence of a vast literature regarding the self-assembly and patterning of nanoparticles on different types of surfaces, it remains unclear the dynamics and main mechanisms behind the formation and maintenance of two-dimensional symmetric patterns of small molecules on top of surfaces. In this contribution, we report initial results on an investigation on the similarities between the well-known Abrikosov hexagonal lattices in superconductors, and the spontaneous formation of hexagonal patterns of some small polycyclic aromatic hydrocarbons (PAHs) on top of a graphitic surface. In order to attest our results, some experimental results from literature are compared to the obtained results.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

De Feyter, S. and De Schryver, F. C., Chem. Soc. Rev. 32, 139 (2003).10.1039/b206566pCrossRefGoogle Scholar
Lei, Y., Yang, S., Wub, M. and Wilde, G., Chem. Soc. Rev. 40, 1247 (2011).10.1039/B924854BCrossRefGoogle Scholar
Perepichka, D. F. and Rosei, F., Science 323, 216 (2009).10.1126/science.1165429CrossRefGoogle Scholar
Otero, R., Hümmelink, F., Sato, F., Legoas, S. B., Thostrup, P., Lægsgaard, E., Stensgaard, I., Galvão, D. S. and Besenbacher, F, Nat. Materials 3, 779 (2004).10.1038/nmat1243CrossRefGoogle Scholar
Otero, R., Gallego, J. M., de Parga, A. L. V., Martín, N. and Miranda, R., Adv. Mater. 23, 5148 (2011).10.1002/adma.201102022CrossRefGoogle Scholar
Tran-Duc, T., Thamwattana, N., Cox, B. J. and Hill, J. M., Computational Mater. Sci. 49, S307 (2010).10.1016/j.commatsci.2010.03.001CrossRefGoogle Scholar
De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. and Hart, A. J., Science 339, 535 (2013).10.1126/science.1222453CrossRefGoogle Scholar
Plass, K. E., Grzesiak, A. L. and Matzger, A. J., Acc. Chem. Res. 40, 287 (2007).10.1021/ar0500158CrossRefGoogle Scholar
Schöck, M., Otero, R., Stojkovic, S., Hümmelink, F., Gourdon, A., Lægsgaard, E., Stensgaard, I., Joachim, C. and Besenbacher, F., J. Phys. Chem. B 110, 12835 (2006).10.1021/jp0619437CrossRefGoogle Scholar
Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S. B., J. of Phys. Condens. Matter 14, 783 (2002).10.1088/0953-8984/14/4/312CrossRefGoogle Scholar
Stuart, S. J., Tutein, A. B., and Harrison, J. A., J. Chem. Phys. 112, 6472 (2000).10.1063/1.481208CrossRefGoogle Scholar
Plimpton, S., J Comp Phys 117, 1 (1995).10.1006/jcph.1995.1039CrossRefGoogle Scholar
http://lammps.sandia.gov (At the date this paper was written, URLs or links referenced herein were deemed to be useful supplementary material to this paper. Neither the author nor the Materials Research Society warrants or assumes liability for the content or availability of URLs referenced in this paper).Google Scholar
Thota, N., Luo, Z., Hu, Z. and Jiang, J., J. Chem. Phys. B 117, 9690 (2013).10.1021/jp4059752CrossRefGoogle Scholar
Florio, G. M., Werblowsky, T. L., Mulller, T., Berne, B. J. and Flynn, G. W., J. Chem. Phys. B 109, 4520 (2005).10.1021/jp046458vCrossRefGoogle Scholar
Kleiner, W. H., Roth, L. M. and Autler, S. H., Physical Review 133, A1226 (1964).10.1103/PhysRev.133.A1226CrossRefGoogle Scholar
Mkhonta, S. K., Elder, K. R. and Huang, Z. –F., Phys. Rev. Lett. 111, 035501(2013).10.1103/PhysRevLett.111.035501CrossRefGoogle Scholar
Walzer, K., Sternberg, M. and Hietschold, M., Surface Science 415, 376 (1998).10.1016/S0039-6028(98)00578-0CrossRefGoogle Scholar
Sun, L. D., Gall, J., Weidlinger, G., Liu, C.Y., Denk, M. and Zeppenfeld, P., Phys. Rev. Lett. 110, 106101 (2013).10.1103/PhysRevLett.110.106101CrossRefGoogle Scholar
Yakobson, B. I., Brabec, C. J., and Bernholc, J., Phys. Rev. Lett. 76, 2511 (1996).10.1103/PhysRevLett.76.2511CrossRefGoogle Scholar
Shenderova, O. A., Brenner, D. W., Omeltchenko, A., Su, X. and Yang, L. H., Phys. Rev. B 61, 3877 (2000).10.1103/PhysRevB.61.3877CrossRefGoogle Scholar
Srivastava, D., Wei, C. and Cho, K., Appl.Mech. Rev. 56, 215 (2003).10.1115/1.1538625CrossRefGoogle Scholar
Shinoda, W., DeVane, R. and Klein, M. L., Mol. Sim. 33, 27 (2007).10.1080/08927020601054050CrossRefGoogle Scholar
Essmann, U. and Träuble, H., Phys. Lett. A 24A, 526 (1967).10.1016/0375-9601(67)90819-5CrossRefGoogle Scholar
Fetter, A. L. and Hohenberg, P. C., Phys. Rev. 159, 330 (1967).10.1103/PhysRev.159.330CrossRefGoogle Scholar