Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:04:54.893Z Has data issue: false hasContentIssue false

Ab-Initio Molecular Dynamics of Organic Compounds on a Massively Parallel Computer

Published online by Cambridge University Press:  10 February 2011

François Gygi*
Affiliation:
Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA) CH-1015 Lausanne, Switzerland
Get access

Abstract

We present results of ab-initio electronic structure calculations and molecular dynamics simulations of organic molecules carried out using adaptive curvilinear coordinates, within the local density approximation of density functional theory. This approach allows for an accurate treatment of first-row elements, which makes it particularly suitable for investigations of organic compounds. A recent formulation of this method relies on a real-space approach which combines the advantages of finite-difference methods with the accuracy of adaptive coordinates, and is well suited for implementation on massively parallel computers. We used molecular dynamics simulations to obtain the fully relaxed structures of nitrosyl fluoride (FNO), and of the aromatic heterocycles furan and pyrrole. The equilibrium geometries obtained show excellent agreement with experimental data. The harmonic vibrational frequencies of furan and pyrrole were calculated by diagonalization of their dynamical matrix and are found to agree with experimental data within an rms error of 25 cm-1 and 28 cm-1 for furan and pyrrole respectively. This accuracy is comparable to that attained for smaller organic molecules using elaborate quantum chemistry methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gygi, F., Europhys. Lett. 19, 617 (1992); Phys. Rev. B 48, 11692 (1993).Google Scholar
2. Gygi, F., Phys. Rev. B 51, 11190 (1995).Google Scholar
3. Hamann, D. R., Phys. Rev. B 51, 7337 (1995); 51, 9508 (1995).Google Scholar
4. Gygi, F. and Galli, G., Phys. Rev. B 52, 2229 (1995).Google Scholar
5. Chelikowsky, J. R., Troullier, N. and Saad, Y., Phys. Rev. Lett. 72, 1240, (1994).Google Scholar
6. Painter, G. S. and Averill, F. W., Phys. Rev. B 26, 1781 (1982).Google Scholar
7. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980); Parametrization of J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).Google Scholar
8. Dibble, T .S. and Francisco, J. S., J. Chem. Phys 99, 397 (1993).Google Scholar
9. Bachelet, G. B., Hamann, D. R. and Schlüter, M., Phys. Rev. B 26, 4199 (1982).Google Scholar
10. See e.g. Kohanoff, J., Comput. Mat. Sci. 2, 221, (1994).Google Scholar
11. See e.g. Press, W. H., Flannery, B. P., Teulkosky, S. A. and Vetterling, W. T., Numerical Recipes, The Art of Scientific Computing (Cambridge University Press, 1986).Google Scholar
12. Andzelm, J. and Wimmer, E., J. Chem. Phys 96, 1280 (1992).Google Scholar
13. Buckton, K. S. et al. Trans. Faraday. Soc 65, 1975 (1969).Google Scholar
14. Cazzoli, G. et al. Nuovo Cimento D 3, 627 (1984).Google Scholar
15. Palmer, M. H. et al. Chem. Phys. 192, 111 (1995).Google Scholar
16. Mata, F. et al., J. Mol. Struct. 48, 157 (1978).Google Scholar
17. Nygaard, L. et al. J. Mol. Struct. 3, 491 (1969).Google Scholar
18. Klots, T. D. et al., Spectrochim. Acta 50A, 765 (1994).Google Scholar
19. Allinger, N. and Yan, L., J. Am. Chem. Soc. 115, 11918 (1993).Google Scholar