Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T23:23:18.346Z Has data issue: false hasContentIssue false

Ab-Initio Calculation of the β-SiC/Ni Interface

Published online by Cambridge University Press:  21 March 2011

A. Blasetti
Affiliation:
INFM - Dip. Fisica, Univ. L'Aquila, 67010 Coppito (L'Aquila), Italy
G. Profeta
Affiliation:
INFM - Dip. Fisica, Univ. L'Aquila, 67010 Coppito (L'Aquila), Italy
S. Picozzi
Affiliation:
INFM - Dip. Fisica, Univ. L'Aquila, 67010 Coppito (L'Aquila), Italy
A. Continenza
Affiliation:
INFM - Dip. Fisica, Univ. L'Aquila, 67010 Coppito (L'Aquila), Italy
A. J. Freeman
Affiliation:
Dept. of Phys. and Astron., Northwestern University, Evanston, IL 60208 (U.S.A.)
Get access

Abstract

We investigate the adsorption of a Ni monolayer on the β-SiC(001) surface by means of highly precise first-principles all-electron FLAPW calculations. Total energy calculations for the Si- and C-terminated surfaces reveal high Ni adsorption energies, with respect to other metals, confirming the strong reactivity and the stability of the transition metal/SiC interface. These high binding energies, about 7.3-7.4 eV, are shown to be related to strong p-d hybridization, common to both surface terminations and different adsorption sites, which, despite the large mismatch, may stabilize overlayer growth. A detailed analysis of the bonding mechanism, in terms of density of states and hybridization of the surface states, reveals the strong covalent character of the bonding. We also calculate and discuss the Schottky barrier heights at the Ni/SiC junction for both terminations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]SiC Materials and Devices, Vol. 52 of Semiconductors and Semimetals, edited by Park, Y. S. (Academic, San Diego, 1998)Google Scholar
[2]Hoekstra, J. and Kohyama, M., Phys. Rev. B 57, 2334 (1998)Google Scholar
[3]Kohyama, M. and Hoekstra, J., Phys. Rev. B 61, 2672 (2000)Google Scholar
[4]Li, Chun, Wu, Ruquian, Freeman, A. J. and Fu, C. L., Phys. Rev. B 48, 8317 (1993)Google Scholar
[5]Kaplan, R. and Bermudez, V. M., in Properties of Silicon Carbide - EMIS Data reviews Series, No. 13 edited by Harris, G. L. (INSPEC, London, 1995) p. 101 Google Scholar
[6]Slijkerman, W. F., Fisher, A. E. M. J., Veen, J. F. van der, Ohdomari, I., Yoshida, S. and Misawa, S., J. Appl. Phys. 66, 666 (1989)Google Scholar
[7]Jansen, H. J. F. and Freeman, A. J., Phys. Rev. B 30, 561 (1984); E. Wimmer, H. Krakauer,M. Weinert and A. J. Freeman, ibid. 24, 864 (1981)Google Scholar
[8]Profeta, G., Continenza, A. and Freeman, A. J. Phys. Rev. B (submitted).Google Scholar
[9]Wenchang, L., Kaiming, Z. and Xide, X., Phys. Rev. B 45, 11048 (1992)Google Scholar
[10]Massidda, S., Min, B. I. and Freeman, A. J. Phys. Rev. B 35, 9871 (1987).Google Scholar
[11]Nishitani, S.R., Fujii, S., Mizuno, M., Tanaka, I., Adachi, H., Phys. Rev. B 58, 9741 (1998).Google Scholar
[12]Schoen, K. J., Woodal, J. M., Cooper, J. A., IEEE Trans. Electr. Dev. Vol. 45, No 7 (1998)Google Scholar
[13]Poster, L. M., Davis, R. F., Bow, J. S., Kim, M. J., Carpenter, R. W., and Glass, R. C., J. Mater. Res. 10, 668 (1995)Google Scholar
[14]Bermudez, V. M., J. Appl. Phys. 63 4951 (1987)Google Scholar