Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T07:49:29.137Z Has data issue: false hasContentIssue false

Ab initio simulation of a tensile test in MoSi2 and WSi2

Published online by Cambridge University Press:  21 March 2011

M. Friák
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-616 62 Brno, Czech Republic, [email protected] Department of Solid State Physics, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
M. Šob
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-616 62 Brno, Czech Republic, [email protected]
V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104–6272, U. S. A.
Get access

Abstract

The tensile test in transition metal disilicides with C113 structure is simulated by ab initio electronic structure calculations using full potential linearized augmented plane wave method (FLAPW). Full relaxation of both external and internal parameters is performed. The theoretical tensile strength of MOS12 and WSi2 for [001] loading is determined and compared with those of other materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mattheiss, L. F., Phys. Rev. B, 45, 3252 (1992).Google Scholar
2. Tanaka, K., Nawata, K., Yamamoto, K., Inui, H., Yamaguchi, M. and Koiwa, M., in Proc. of the U.S.-Japan Workshop on Very High Temperature Structural Materials (1999), p. 67.Google Scholar
3. Andersen, O.K., Methfessel, M., Rodriguez, C.O., Blöchl, P., and Polatoglou, H.M., in Atomistic Simulations of Materials: Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D.J. (Plenum, New York-London, 1989), p. 1.Google Scholar
4. Šob, M., Wang, L.G., and Vitek, V., Comp. Mat. Sci., 8, 100 (1997).Google Scholar
5. Blaha, P., Schwarz, K., and Luitz, J., WIEN97, Technical University of Vienna 1997 (improved and updated Unix version of the original copyrighted WIEN-code, which was published by Blaha, P., Schwarz, K., Sorantin, P., and Trickey, S.B., Comput. Phys. Commun., 59, 399 (1990).Google Scholar
6. Harada, Y., Morinaga, M., Saso, D., Takata, M. and Sakata, M., Intermetallics, 6, 523 (1998).Google Scholar
7. Nicolet, M.-A. and Lau, S.S., in VLSI Electronics: Microstructure Science, ed. Einspruch, N.G. and Larrabee, G.B. (Academic, New York, 1983), Vol. 6, p. 329.Google Scholar
8. Alouani, M., Albers, R. C., and Methfessel, M., Phys. Rev. B, 43, 6500 (1991).Google Scholar
9. Tang, S., Zhang, K., and Xie, X., J. Phys. C, 21, L777 (1988).Google Scholar
10. Šob, M., Wang, L.G., and Vitek, V., Phil. Mag. B, 78, 653 (1998).Google Scholar
11. Šob, M., Wang, L.G., and Vitek, V., Mat. Sei. Eng. A, 234–236, 1075 (1997).Google Scholar
12. Tanaka, K. et al., this Proceedings.Google Scholar