Published online by Cambridge University Press: 10 February 2011
Ab initio calculations of grain boundaries in SiC have been performed for the first time by using the first-principles molecular dynamics (FPMD) method. Four-fold coordinated models of polar and non-polar interfaces of the {122}Σ = 9 boundary in SiC have been examined. Interfacial C-C and Si-Si wrong bonds have bond lengths and bond charges similar to those in bulk diamond and Si. The C-C bonds generate greatly localized states at the valence-band edges, which have features similar to the bulk band-edge states of diamond. The wrong bonds have significant effects on the properties of grain boundaries in SiC.