Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T14:13:25.890Z Has data issue: false hasContentIssue false

Ab initio calculation of point defect energies and atom migration profiles in varying surroundings in L12-ordered intermetallic compounds

Published online by Cambridge University Press:  26 February 2011

Doris Vogtenhuber
Affiliation:
Institut für Materialphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
Jana Houserova
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-616 62 Brno, Czech Republic
Walter Wolf
Affiliation:
Materials Design s.a.r.l., 44 av. F.-A. Bartholdy, F-72000 Le Mans, France
Raimund Podloucky
Affiliation:
Institut für Physikalische Chemie, University of Vienna, Liechtensteinstrasse 22a, A-1090 Vienna, Austria
Wolfgang Pfeiler
Affiliation:
Institut für Materialphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
Wolfgang Püschl
Affiliation:
Institut für Materialphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
Get access

Abstract

Formation energies of antisite defects and vacancies were derived for the L12-ordered intermetallics Ni3Al, Ni3Ga, Pt3Ga, and Pt3In by a supercell ab initio approach. A thermodynamic treatment of point-like defects was then used for the calculation of temperature-dependent defect properties. Energy profiles for atom jumps in Ni3Al in systematically varied atomic neighborhoods were calculated by statically displacing the jumping atom or by using a nudged elastic band method. It is discussed how a kinetic Monte-Carlo model can be modified so that the jump barrier height reflects the strongest neighborhood influences.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Westbrook, J.H. and Fleischer, R.L., in Intermetallic compounds-principles and practice, Vol.1 and 2 (Wiley, Chichester, 1994).Google Scholar
2. Sauthoff, G., Intermetallics. (VCH Verlagsgesellschaft, Weinheim, 1995).Google Scholar
3. Pfeiler, W., JOM 52, 14 (2000)Google Scholar
4. Oramus, P., Kozubski, R., Pierron-Bohnes, V., Cadeville, M. C., Massobrio, C. and Pfeiler, W., Mat. Sci. Eng. A 324, 11 (2002).Google Scholar
5. Oramus, P., Kozubski, R., Pierron-Bohnes, V., Cadeville, M. C. and Pfeiler, W., Phys. Rev. B 63, 174109 (2001).Google Scholar
6. Schweiger, H., Semenova, O., Wolf, W., Püschl, W., Pfeiler, W., Podloucky, R. and Ipser, H., Scripta Materialia 46, 37 (2001).Google Scholar
7. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996); Comput. Mater. Sci. 6, 15 (1996).Google Scholar
8. Rasamny, M., Weinert, M., Fernando, G.W. and Watson, R.E., Phys. Rev. B 64, 144107 (2001).Google Scholar
9. Houserova, J., Vogtenhuber, D., Wolf, W., Podloucky, R., Pfeiler, W., and Püschl, W., Defect and Diffusion Forum, in the press (2004).Google Scholar
10. Mills, G., Jónsson, H., and Schenter, G., Surface Sci. 324, 30 (1995).Google Scholar
11. Vineyard, G. H., J. Phys. Chem. Solids 3, 121 (1957)Google Scholar