Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T04:21:26.823Z Has data issue: false hasContentIssue false

500 °C Formation of Poly-Si1-xGex (x≥ 0.5) on SiO2 by Ion-beam Stimulated Solid Phase Crystallization

Published online by Cambridge University Press:  11 February 2011

Isao Tsunoda
Affiliation:
Department of Electronics, Kyushu University, 6–10–1 Hakozaki, Fukuoka 812–8581, Japan
Hiroshi Kanno
Affiliation:
Department of Electronics, Kyushu University, 6–10–1 Hakozaki, Fukuoka 812–8581, Japan
Atsushi Kenjo
Affiliation:
Department of Electronics, Kyushu University, 6–10–1 Hakozaki, Fukuoka 812–8581, Japan
Taizoh Sadoh
Affiliation:
Department of Electronics, Kyushu University, 6–10–1 Hakozaki, Fukuoka 812–8581, Japan
Masanobu Miyao
Affiliation:
Department of Electronics, Kyushu University, 6–10–1 Hakozaki, Fukuoka 812–8581, Japan
Get access

Abstract

Ion beam stimulated solid phase crystallization of a-Si1-xGex (0 ≤ x ≤ 1) on SiO2 has been investigated. The critical temperature to cause crystal nucleation can be successfully decreased by 150 °C for a-Si1-xGex with all Ge fractions (0 - 100 %) by using ion stimulation. As a result, crystal growth below the softening temperature (∼ 500 °C) of glass substrates was achieved for samples with Ge fractions exceeding 50 %. This method combined with Ge doping and ion stimulation will be a powerful tool to fabricate poly-SiGe TFTs on low cost glass substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. King, T.J. and Saraswat, K.C., J. Electrochem. Soc. 141, 2235 (1994).Google Scholar
2. Hwang, C.W., Ryu, M.K., Kim, K.B., Lee, S.C., and Kim, C.S., J. Appl. Phys. 77, 3042 (1995).Google Scholar
3. Spinella, C., Lombardo, S., and Priolo, F., J. Appl. Phys. 84, 5383 (1998).Google Scholar
4. Yamaguchi, S., Sugii, N., Park, S.K., Nakagawa, K., and Miyao, M., J. Appl. Phys. 89, 2091 (2001).Google Scholar
5. Kim, H.S. and Lee, J.Y., Thin Solid Films 350, 14 (1999).Google Scholar
6. Olivares, J., Rodriguez, A., Sangrador, J., Rodriguez, T., Ballesteros, C., and Kling, A., Thin Solid Films 337, 51 (1999).Google Scholar
7. Olivares, J., Martin, P., Rodriguez, A., Sangrador, J., Jimenez, J., and Rodriguez, T., Thin Solid Films 358, 56 (2000).Google Scholar
8. Kim, J.W., Ryu, M.K., Kim, K.B., and Kim, S.J., J. Electrochem. Soc. 143, 363 (1996).Google Scholar
9. Yu, G., Krishna, K.M., Shao, C., Umeno, M., Soga, T., Watanabe, J., and Jimbo, T., J. Appl. Phys. 83, 174 (1998).Google Scholar
10. Miyao, M., Moniwa, M., Kusukawa, K., and Sinke, W., J. Appl. Phys. 64, 3018 (1988).Google Scholar
11. Olson, G. L. and Roth, J. A., Handbook of Crystal Growth 3, edited by Hurle, D. T. J. (Elsevier, Amsterdam, 1994) Part A, p. 280.Google Scholar
12. Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, D., Energy Beam-Solid Interactions and Transient Processing, edited by Biegelsen, D. K., Rozgonyi, G. A., and Shank, C. V., (Mater. Res. Soc. Proc. 85, 1985) p. 141.Google Scholar
13. Kringhoj, P. and Elliman, R. G., Phys. Rev. Lett. 73, 858 (1994).Google Scholar
14. Miyao, M., Tsunoda, I., Sadoh, T., and Kenjo, A., Thin Solid Films 383, 104 (2001).Google Scholar
15. Tsunoda, I., Nagata, T., Kenjo, A., Sadoh, T., and Miyao, M., Mater. Sci. and Eng. B 89, 336 (2002).Google Scholar
16. Alonso, M.I. and Winer, K., Phys. Rev. B 39, 10056 (1989).Google Scholar
17. Tsang, J.C., Mooney, P.M., Dacol, F., and Chu, J.O., J. Appl. Phys. 75, 8098 (1994).Google Scholar