Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T15:18:05.154Z Has data issue: false hasContentIssue false

A 207Pb NMR Study of Beta"-Alumina

Published online by Cambridge University Press:  28 February 2011

Bruce M. Sass
Affiliation:
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104–6323
Bryan H. Suits
Affiliation:
Department of Physics, Michigan Technological University, Houghton, MI 49931
David White
Affiliation:
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104–6323
Get access

Abstract

We report results of a nuclear magnetic resonance (NMR) study of lead(II) cations in β"-alumina. Measurements of line positions and spin-lattice relaxation times (T1) as a function of temperature are presented. The results show that Pb ions possess both static and dynamic disorder in low and intermediate temperature regimes, respectively. Also, a comparison is made between Lorentzian and logarithmic spectral density functions, from which we conclude that the latter provides a better fit to the dataat short correlation times (ωºτºα). The logarithmic form has been proposed to describe diffusive motion in 2-dimensional conductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Seevers, R., DeNuzzio, J., Farrington, G.C. and Dunn, B., J. Solid State Chem. 50, 146 (1983).Google Scholar
2. Kjaer, K., Hayes, W. and Schonfeld, B., J. Phys. C: Solid State Phys. 20, 6089 (1987).CrossRefGoogle Scholar
3. Boilot, J.P., Lee, M.R., Colomban, Ph., Collin, G., and Comes, R., J. Phys. Chem. Solids 47, 693 (1986).CrossRefGoogle Scholar
4. Hayes, W. and Pratt, F.L., J. Phys. C: Solid State Phys. 19, 929 (1986).Google Scholar
5. Slichter, C.P., Principles of Magnetic Resonance (Harper & Row Publishers, New York, 1963), p. 153.Google Scholar
6. Rohrer, G.S., PhD thesis, University of Pennsylvania, 1989.Google Scholar
7. Walstedt, R.E., Dupree, R., Remeika, J.P. and Rodriguez, A., Phys. Rev. B 15, 3442 (1977).Google Scholar
8. Richards, P.M., Solid State Commun. 25, 1019 (1978).Google Scholar
9. Silbemagel, B.G. and Gamble, F.R., Phys. Rev. Lett. 32, 1436 (1974).CrossRefGoogle Scholar
10. Kleinberg, R.L. and Silbernagel, B.G., Solid State Commun. 33, 867 (1980).Google Scholar
11. Mackowiak, M., Liu, G. and Jonas, J., J. Chem. Phys. 93, 2154 (1990).Google Scholar
12. Gallier, J., Toudic, B., Stahn, M., Lechner, R.E. and Dachs, H., J. Phys. France 49, 949 (1988).Google Scholar
13. Sholl, C.A., J. Phys. C: Solid State Phys. 14, 447 (1980).Google Scholar
14. Avogadro, A. and Villa, M., J. Chem. Phys. 66, 2359 (1977).Google Scholar
15. Korb, J.-P., Winterhalter, M. and McConnell, H.M., J. Chem. Phys. 80, 1059 (1984).Google Scholar
16. Liu, S-B and Conradi, M.S., Phys. Rev. B 30, 24 (1984).Google Scholar
17. Gullion, T. and Conradi, M.S., Phys. Rev. B 32, 7076 (1985).CrossRefGoogle Scholar
18. Abragam, A., The Principles of Nuclear Magnetism (Oxford University Press, 1961), pp. 447467.Google Scholar
18a. Chapter 8.Google Scholar
19. Nizam, M., Allavena, M., Bouteiller, Y., Suits, B.H. and White, D., J. Magn. Reson. 82, 441 (1989).Google Scholar
20. Benz, S. and Haeberlen, U., J. Magn. Reson. 66, 125 (1986).Google Scholar
21. Carduner, K. R. and White, D., J. Chem. Phys. 85, 3165 (1986)Google Scholar